Abstract:
Aluminum oxide in peat clay has the potential to be used as a catalyst, coagulant, and adsorbent for the water treatment process. The usefulness of aluminum oxide in peat clay is enhanced by the leaching process. Aluminum was leached from peat clay in a variety of microwave power, HCl concentrations, and particle size. The effect of the microwave leaching parameters on the aluminum leaching rate was observed. The shrinking core (SC) model used in microwave-assisted leaching was assumed a pseudo steady state with chemical reactions. Effective diffusivity (De), mass transfer coefficient (kc), and reaction rate constants (k) are used as fitting parameters. The best fitting parameters De, kc, and k obtained 0.0049 cm2/s, 2.49 cm/s, and 10.5 cm/s, respectively. The comparison of experimental data and model calculations shown that the SC model can describe experimental data well for all microwave-assisted leaching conditions. Precious information on the results of this research can be given for the goal of the scaling-up and design of the microwave assisted leaching process