dc.description.abstract |
The preservation of standing biomass is one of the most vital elements for environmental sustainability and the sustainability of the forest itself. One of the actions that can be taken in an effort to maintain the sustainability of forest stand biomass is to map the distribution of biomass, and monitor changes or dynamics of stand biomass from time to time in a sustainable manner. This study aims to build a model based on remote sensing imagery to estimate the total biomass of tropical rainforest stands in Mandiangin Hill, South Kalimantan. The models developed in this study are based on vegetation indices extracted from Sentinel-2 MSI Imagery. A total of ten vegetation indices were tested in this study. For the construction process and validation of stand biomass estimation models, biomass information was measured directly in the field using a number of measuring plots. Stand biomass estimation models were made by correlating stand biomass information from the field with vegetation indices from Sentinel-2 MSI Imagery. The results showed that the most accurate model for estimating the biomass of tropical rainforest stands was 9.5806.exp (0.1454.PSSRa). Where PSSRa is Pigment Specific Simple Ratio. This model has a correlation coefficient (R2) of 0.876, a Mean Absolute Percentage Error (MAPE) of 16.8%, and a Root Mean Square Error (RMSE) of 32.6. The estimation results show that the total biomass of the Bukit Mandiangin tropical rainforest stands is between 11.7 to 998.5 Mg/ha, with an average biomass of 135.8 Mg/ha. Furthermore, the estimation of stand biomass in this study is limited to woody vegetation with a DBH of 10 cm and above. The PSSRa model with various improvements can be used to accurately estimate stand biomass |
en_US |