Repo Dosen ULM

Macular hole morphology and measurement using an automated three- dimensional image segmentation algorithm

Show simple item record

dc.contributor.author NASRULLOH, AMAR VIJAI
dc.date.accessioned 2020-11-26T03:33:51Z
dc.date.available 2020-11-26T03:33:51Z
dc.date.issued 2020
dc.identifier.uri https://repo-dosen.ulm.ac.id//handle/123456789/18378
dc.description.abstract Objective Full-thickness macular holes (MH) are classified principally by size, which is one of the strongest predictors of anatomical and visual success. Using a three-dimensional (3D) automated image processing algorithm, we analysed optical coherence tomography (OCT) images of 104 MH of patients, comparing MH dimensions and morphology with clinician-acquired two-dimensional measurements. Methods and Analysis All patients underwent a high-density central horizontal scanning OCT protocol. Two independent clinicians measured the minimum linear diameter (MLD) and maximum base diameter. OCT images were also analysed using an automated 3D segmentation algorithm which produced key parameters including the respective maximum and minimum diameter of the minimum area (MA) of the MH, as well as volume and surface area. Results Using the algorithm-derived values, MH were found to have significant asymmetry in all dimensions. The minima of the MA were typically approximately 90° to the horizontal, and differed from their maxima by 55 μm. The minima of the MA differed from the human-measured MLD by a m. The minima of the MA differed from the human-measured MLD by a mean of nearly 50 μm. The minima of the MA differed from the human-measured MLD by a m, with significant interobserver variability. The resultant differences led to reclassification using the International Vitreomacular Traction Study Group classification in a quarter of the patients (p=0.07). Conclusion MH are complex shapes with significant asymmetry in all dimensions. We have shown how 3D automated analysis of MH describes their dimensions more accurately and repeatably than human assessment. This could be used in future studies investigating hole progression and outcome to help guide optimum treatments. en_US
dc.publisher UNIVERSITAS LAMBUNG MANGKURAT en_US
dc.subject Research Subject Categories::NATURAL SCIENCES en_US
dc.title Macular hole morphology and measurement using an automated three- dimensional image segmentation algorithm en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account