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Abstract. Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set formed from 

a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set formed from a fuzzy subset, the 

parameter used is the image of a fuzzy subset which is then mapped to the collection of all subsets of a universal set. 

This research aimed to explain the construction of soft sets formed from fuzzy subsets. Then, to prove the validity of 

the properties of subsets and complements on soft sets formed from a fuzzy subset based on the properties of subsets 

and complements on soft sets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets formed from 

fuzzy subsets. This research showed that functions formed from a fuzzy subset met the requirements for forming soft 

sets. Also, the sufficient condition obtained was that a soft set formed from a fuzzy subset is a subset of other soft sets. 

The complementary properties of a soft set formed from a fuzzy subset were also obtained. Furthermore, it was found 

that the soft set formed from the intersection of two fuzzy subsets is a subset of the intersection of two soft sets formed 

from the two fuzzy subsets. This case also applied to union operations. Furthermore, the result of the mapping of the 

soft set formed from the union of the two fuzzy subsets was the subset of the mapping results of the soft set formed 

from the OR operation of the two soft sets formed from each of these fuzzy subsets. Then, for the AND operation, the 

reverse was true using the intersection operation. 

Keywords: a fuzzy subset, soft sets, soft sets formed from fuzzy subsets. 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and 

which are not members. Members of a set are objects that have certain similarities [1]. The level of similarity 

of objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping 

objects using varying degrees of similarity. The grouping process, which tends to show varying levels of 

similarity, makes it difficult to group using concepts from classical set theory. Therefore, a more relevant 

theory is needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 

character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterized subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. A soft set formed from a fuzzy subset is a special form of a soft set in 

its parameter set. In a soft set formed from a fuzzy subset, the parameter used is the image of a fuzzy subset 

which is then mapped to a collection of all subsets of a universal set.  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 

decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy and soft sets and generalizes soft sets. Irfan Ali and Shabir  [8] developed the theory. To address 

decision-making problems based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets of 

fuzzy soft sets. They initiated an adjustable decision-making scheme using fuzzy soft sets [9], followed by a 

generalized soft fuzzy set [10] and its application to the student ranking system [11].  

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 

formed from fuzzy subsets. 

 

1.1  Fuzzy Subsets 

Definition 1. [3] Let non-empty set �. A fuzzy subset � of � is defined as a mapping �: � →  [0,1] 
The function � is called a fuzzy subset of � and can be expressed by � = ��, ������� ∈ ��, where ���� is 

the membership degree of � ∈ � for a fuzzy subset �. The collection of all fuzzy subsets of � denoted by ℱ���, i.e., ℱ��� = ��|�: � → [0,1]�. 
 

Definition 2. [3] Let �, � ∈  ℱ���. If ���� ≤ ���� for all  � ∈ �, then � is contained in � and can be written � ⊆ � �� ⊇ ��. If � ⊆ � and � ⊇ � then � is equal to � and can be written � = �.  
 

Definition 3. [3] Let � be a fuzzy subset of �. The complement of � is the fuzzy subset ��, where �����  =  1 − ���� 
 

Definition 4. [3] Let �, � ∈ ℱ���. The intersection and union of � and � is the fuzzy subsets � ∩ � and � ∪ �, 

where �� ∩ ����� = min�����, �����  =  ���� ∧ ���� �� ∪ ����� = max�����, �����  =  ���� ∨ ���� 
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1.2 ) −Cut on Fuzzy Subsets 

Definition 5. [3] Let � ∈ ℱ���. For all * ∈ [0,1] can be defined * −level subset �* − +�,� of �, which is 

denoted �-, i.e. �- = ��|� ∈ �, ���� ≥ *� 

 

Theorem 1. [12] Let �, � ∈ ℱ���, for all *, / ∈ [0,1] the following properties hold true  

1) � ⊆  � ⇒ �-  ⊆ �-  

2) * ≤ / ⇒ �1  ⊆  �- 

3) * = / ⇒ �1 = �-  

4) � = � ⟺ �- = �-  
 

Theorem 2. [13] Let �, � ∈ ℱ���, for all * ∈ [0,1] the following properties hold true  

1) �� ∪ ��- = �- ∪ �- 
2) �� ∩ ��- = �- ∩ �-  

 

1.3 Soft Sets 

Definition 6. [2] Let � be a universal set and 3 be a set of parameters. A pair �4, 3� is called a soft set over � where 4 is a mapping given by 4: 3 → 5��� 

For 6 ∈ 3,  4�6� may be considered as the set 6-approximate elements of the soft set �4, 3�. A soft set over � can be expressed by �4, 3�  =  �6, 4�6���6 ∈ 3�.  

Definition 7. [14] Let �4, 3� and �7, 8� be two soft sets over �.  Then �4, 3� is called a soft subset of �7, 8� 

denoted by �4, 3� ⊆9 �7, 8�, if 

1) 3 ⊆ 8 and 

2) for all 6 ∈ 3, 4�6� ⊆ 7�6�.  

Definition 8. [14] Let �4, 3� and �7, 8� be two soft sets over �. Then �4, 3� and �7, 8� are said to be equal, 

denoted by �4, 3� = �7, 8�, if �4, 3� ⊆9 �7, 8� and �7, 8� ⊆9 �4, 3�.  

Definition 9. [15] Let 3 = �6:, 6;, 6<, … , 6>� be a set of parameters. The complement of 3 denoted by       ¬3 = �¬6:, ¬6;, ¬6<, … , ¬6>� where ¬6@ is “not 6@”  and ¬�¬6@� = 6@, for all A = 1,2, … , C.  

Definition 10. [16] The relative complement of a soft set �4, 3� is denoted by �4, 3�D  and is defined by �4, 3�D = �4D , 3�, where 4D : 3 → 5��� is a mapping given by 4D�6� = � − 4�6�, for all 6 ∈ 3.  

Definition 11. [17] Bi-intersection of two soft sets �4, 3� and �7, 8� over � is defined to be the soft set �E, F� 

where F = 3 ∩ 8 and for all G ∈ F, E�G� = 4�G� ∩ 7�G�. The bi-intersection of �4, 3� and �7, 8� is denoted 

by �4, 3� ∩9 �7, 8� = �E, F�.  

Definition 12. [15] Let �4, 3� and �7, 8� be two soft sets over �.  The union of �4, 3� and �7, 8� is defined 

to be a soft set �H, I�, where I = 3 ∪ 8 and for all G ∈ I satisfying the following conditions 

H�G� = J                     4�G�,                  G ∈ 3 − 8                          7�G�,                  G ∈ 8 − 3      4�G� ∪ 7�G�,                   G ∈ 3 ∩ 8.  

The union of �4, 3� and �7, 8� is denoted by �4, 3� ⨆ �7, 8� = �H, I�.  

Definition 13. [15] Let �4, 3� and �7, 8� be two soft sets over �. Operation OR from �4, 3� and �7, 8�, denoted by �4, 3� ∨9 �7, 8�, is defined to be a soft set �E, 3 × 8�, where E�6, M� = 4�6� ∪ 7�M�, for 

all �6, M� ∈ 3 × 8.  

Definition 14. [15] Let �4, 3� and �7, 8� be two soft sets over �. Operation AND from �4, 3� and �7, 8�, denoted by �4, 3� ∧9 �7, 8�, is defined to be a soft set �H, 3 × 8�, where H�6, M� = 4�6� ∩ 7�M�, for 

all �6, M� ∈ 3 × 8.  
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2 RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and * −cut on fuzzy subsets. 

2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 

4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 

5. Writing a conclusion. 

 

 

3 RESULT AND DISCUSSION 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

Soft sets can be formed from fuzzy subsets, i.e., a soft set with its parameters is the image of a fuzzy 

subset stated in the following proposition.  

Proposition 1. Let � be a universal set, �: � → [0,1] be a fuzzy set where 3 = Im��� ⊆ [0,1]. A pair �4O , 3� 

is a soft set where 4O: 3 → 5��� which is defined as 4O�*� = �- , for all * ∈ 3. Furthermore, soft set �4O , 3� 

is called a soft set over �, formed from a fuzzy subset �. 

Proof. Let *:, *; be any element of 3 where *: = *;, so based on Theorem 1 and the definition of 4O, it is 

obtained that �-P = �-Q ⟺ 4O�*:� = 4O�*;�, thus 4O: 3 → 5��� is well defined. Therefore,             4O: 3 →5��� is a function. In other words, based on Definition 6, it was proved that �4O , 3� is a soft set over the 

universal set �. ■ 

Example 1. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.4�, ��V, 0.7��. 
Thus, the soft set �4O , 3� was obtained as follows.  �4O , 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��;, �V��, �0.8, ��;�� Y 

3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

This section presents the properties of subsets and complements that apply to soft sets formed from 

fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �4O , 3� is a subset of �7Z , 8� if 3 ⊆ 8 and � ⊆ �. 

Proof. It is known that 3 ⊆ 8 and based on Theorem 1, if � ⊆ �, then �- ⊆ �-. In other words, based on 

Proposition 1, it is obtained that 4O�*� ⊆ 7Z�*� for all * ∈ 3. Therefore, based on Definition 7, it is obtained 

that �4O , 3� ⊆[ �7Z , 8�. ∎ 

Example 2. Based on Example 1, a fuzzy subset � is obtained. Next, let the fuzzy subset � be given by         � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 

Therefore, it is obtained that 3 ⊆ 8 and ���� ≤ ���� for all  � ∈ �.  Furthermore, based on Definition 2, it 

is obtained that � ⊆ �. 

Next, it is obtained that �7Z, 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��:, �;, �V��, �0.8, ��;, �V�� Y 

Consequently, 4O�*� ⊆ 7Z�*� for all * ∈ 3.  

Thus, it was obtained that �4O , 3� ⊆[ �7Z , 8�. 

Based on Definition 10, it is known that the complement of a soft set �4, 3� is defined as �4D , 3�. Next, 

in this research, it is defined that �4O , 3�D = �4OD , 3� where 4OD�*� = � − 4O�*� for all * ∈ 3. The following 

proposition states �4O , 3�D
 as a soft set over a universal set � that is formed from a fuzzy subset �. 

Proposition 3. If �4O , 3� is a soft set formed from a fuzzy subset � over a universal set �, then �4O , 3�D
 is a 

soft set formed from a fuzzy subset � over a universal set �, where �4O , 3�D = �4OD , 3�. 
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Proof. Let *:, *; be any element of 3 where *: = *;, so based on Theorem 1 and the definition of 4O, It is 

obtained that �-P = �-Q ⟺ 4O�*:� = 4O�*;�. Consequently, based on the definition of 4OD, it is obtained that � − 4O�*:� = � − 4O�*;� ⟺ 4OD�*:� = 4OD�*;�. Therefore, 4OD: 3 → 5��� is well-defined. Thus,        4OD : 3 → 5��� is a function. In other words, based on Proposition 1, it is proved that �4O , 3�D
 is a soft set 

formed from a fuzzy subset � over universe �. ■  

Next, the soft set �4O , 3�D
is called the complement of a soft set �4O , 3�. 

It is known, based on Definition 3, that for any fuzzy subset �, there is always a complement of � that 

is denoted by �D . The complement of a soft set formed from a fuzzy subset is not equal to a soft set formed 

from the complement of a fuzzy subset, which is shown in the following example and proposition. 

Example 3. Based on Example 1, a fuzzy subset � is obtained.  

Therefore, �4OD , 3 � = X �0.1, ∅�, �0.4, ��<��,�0.7, ��:, �<, �U��, �0.8, ��:, �<, �U, �V�� Y 

and �4O_ , 3 � = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �<, �U��,�0.7, ��<��, �0.8, ��<�� Y 

It is obtained that �4OD , 3� ≠ �4O_ , 3�. In other words, �4O , 3�D ≠ �4O_ , 3�. 

Proposition 4. If �4O , 3� is a soft set formed from a fuzzy subset � over a universal set �, then                 �4O , 3�D ≠ �4O_ , 3�. 

It is known that based on Definition 9, for any parameter set 3, there is always a complement of 3 

denoted by ¬3. Next, if a soft �4O , 3� exists, then ¬4O: ¬3 → 5���, defined by ¬4O�¬*� = 4O�1 − *� for 

all * ∈ 3, can be formed. It can be shown that �¬4O , ¬3� is a soft set formed from a fuzzy subset � over 

universe �, stated in the following proposition.  

Proposition 5. If �4O , 3� is a soft set formed from a fuzzy subset � over a universe �, then �¬4O , ¬3� is a 

soft set formed from a fuzzy subset � over a universe �. 

Proof. Let *:, *; be any element of 3 where *: = *;. Consequently, 1 − *: = 1 − *; so based on Theorem 

1 and the definition of ¬4O, It is obtained that ��:a-P� = ��:a-Q� ⟺ ¬4O�¬*:� = ¬4O�¬*;�.  Therefore, ¬4O: ¬3 → 5��� is well-defined. Thus, ¬4O: ¬3 → 5��� is a function. In other words, based on Proposition 

1, it is proved that  �¬4O , ¬3� is a soft set formed from a fuzzy subset � over universe �. ■  

Hereafter, �¬4O , ¬3� is called the negation of a soft set �4O , 3�. 
Proposition 6. Let �4O , 3� be a soft set formed from a fuzzy subset � over a universe �. If ���� ≠ 1 − * for 

all � ∈ � then ¬4OD�¬*� = 4O_�*� for all * ∈ 3. 

Proof. Let * be any element of 3. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  ¬4OD�¬*� = � − b¬4O�¬*�c  = � − 4O�1 − *�  = � − ��:a-�  = � − �� ∈ �|���� ≥ 1 − *�   = �� ∈ �|���� < 1 − *�  

on the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 4O_�*�  = ��D�-  = �� ∈ �|�D��� ≥ *�  = �� ∈ �|1 − ���� ≥ *�  = �� ∈ �|���� ≤ 1 − *�   

Because ���� ≠ 1 − * for all � ∈ �, it is obtained that 4O_�*� = �� ∈ �|���� < 1 − *�  

Thus, it is proven that if ���� ≠ 1 − * for all � ∈ � then ¬4OD�¬*� = 4O_�*� for all * ∈ 3. ∎ 

Example 4. Let � = ���:, 0.5�, ��;, 0.7�, ��<, 0.2�, ��U, 1�, ��V, 0.9�, ��f, 0��. 

Therefore, �¬4OD , ¬3� = X�¬0, ��:, �;, �<, �V, �f��, �¬0.2, ��:, �;, �<, �f��, �¬0.5, ��<, �f��,�¬0.7, ��<, �f��, �¬0.9, ��f��, �¬1, ∅� Y 
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on the other hand, because ���� ≠ 1 − * for all � ∈ �, then it is obtained that �4O_ , 3� = X�0, ��:, �;, �<, �V, �f��, �0.2, ��:, �;, �<, �f��, �0.5, ��<, �f��,�0.7, ��<, �f��, �0.9, ��f��, �1, ∅� Y 

Consequently, ¬4OD�¬*� = 4O_�*� for all * ∈ 3. 

 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z , 8� if Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��.  

Proof. Based on Definition 7, To prove that �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z, 8�, it must be proven that                      F ⊆ 3 ∩ 8 and Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

(i) Let G be any element of Im�� ∩ �� so there exists � ∈ � such that G = �� ∩ �����, then based on 

Definition 4, it is obtained that G = min�����, �����. 

1) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���. Next, as     Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

2) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���.  Next, as Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

From 1) and 2), it is obtained that Im�� ∩ �� ⊆ Im��� ∩ Im���, so based on Proposition 1, it is proven 

that F ⊆ 3 ∩ 8. 

(ii) Let h be any element of F. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  EO∩Z�h� = �� ∩ ��i  = �i ∩ �i  = 4O�h� ∩ 7Z�h�  = �4O ∩ 7Z��h�  

It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

From (i) and (ii), it is obtained that �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z, 8�.∎ 

Example 5. Let � = ���:, 0.8�, ��;, 0.1�, ��<, 0.7�, ��U, 0.4�, ��V, 0.7�� 

and � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 
Therefore, Im(�� ⊆ Im(�� and 3 ∩ 8 = �0.1, 0.4, 0.7, 0.8�  

On the other hand, based on Definition 4, it is obtained that F = �0.7, 0.1, 0.4�  

Thus, F ⊆ 3 ∩ 8. 

Furthermore, it is obtained that �Eg∩Z, F� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y 

and b�4O ∩ 7Z�, Fc = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y. 

It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Consequently, Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

Thus, �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z, 8�. 

Proposition 8. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8� if �i ⊆ �i when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

Proof. Based on Definition 7, to prove that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�, it must be proven that I ⊆ 3 ∪ 8 

and Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all h ∈ I.  

(i) Let G be any element of Im�� ∪ �� so there exists � ∈ � such that G = �� ∪ �����, then based on 

Definition 4, it is obtained that G = max�����, �����. 

1) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  
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2) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

From 1) and 2), it is obtained that G ∈ Im��� or G ∈ Im��� in other words G ∈ Im��� ∪ Im���. 

Consequently, Im�� ∪ �� ⊆ Im��� ∪ Im���, so based on Proposition 1, it is proven that I ⊆ 3 ∪ 8. 

 

 

 

(ii) Based on Definition 12, for all h ∈ I holds 

�4O ∪ 7Z��h� = J                     4O�h�,                  h ∈ 3 − 8                          7Z�h�,                  h ∈ 8 − 3      4O�h� ∪ 7Z�h�,                  h ∈ 3 ∩ 8.  

1) If h ∈ 3 − 8 

Let h be any element of 3 − 8 and if h ∈ 3 − 8 then �i ⊆ �i. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  HO∪Z�h� = �� ∪ ��i   = �i ∪ �i  = �i  

     = 4O�h�  

              It is obtained that HO∪Z�h� = 4O�h� when h ∈ 3 − 8. 

2) If h ∈ 8 − 3 

Let h be any element of 8 − 3 and if h ∈ 8 − 3 then �i ⊆  �i . Then, based on Theorem 2 and 

Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i  = �i ∪ �i  = �i  = 7Z�h�  

              It is obtained that HO∪Z�h� = 7Z�h� when h ∈ 8 − 3. 

3) If h ∈ 3 ∩ 8 

 Let h be any element of 3 ∩ 8. Based on Theorem 2 and Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i  = �i ∪ �i  = 4O�h� ∪ 7Z�h�  

 It is obtained that HO∪Z�h� = 4O�h� ∪ 7Z�h� when h ∈ 3 ∩ 8. 

From 1), 2), and 3), it is obtained that Hg∪Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that                         Hg∪Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ I. 

From (i) and (ii), it is obtained that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�. ∎ 

Example 6. Let � = ���:, 0�, ��;, 0.2�, ��<, 0.4�, ��U, 0.9�� 

and � = ���:, 0�, ��;, 0.2�, ��<, 0.6�, ��U, 0.8��. 
Therefore, 3 ∪ 8 = �0, 0.2, 0.4, 0.6, 0.8, 0.9�  

on the other hand, based on Definition 4, it is obtained that I = �0, 0.2, 0.6, 0.9�  

Thus, I ⊆ 3 ∪ 8. 

Next, it is obtained that �Hg∪Z, I� = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y 

and b�4O ∪ 7Z�, Ic = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y. 

It is obtained that �i ⊆ �i when h ∈ 3 − 8 and �i ⊆ �i when h ∈ 8 − 3. 

Furthermore, it is obtained that Hg∪Z�h� = �4O ∪ 7Z��h�. Consequently, Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all         h ∈ I. 

Thus, it is obtained that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�. 
Proposition 9. If �4O , 3� and �7Z, 8� are two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set � then �E�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over the universal set �, 

where  
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E�O,Z�: 3 × 8 → 5��� 

is defined as E�O,Z��*, /� = �- ∪ �1 for all * ∈ 3 and / ∈ 8. 

Proof. Let �*:, /:�, �*;, /;� be any element of �3 × 8� where �*:, /:� = �*;, /;�. Consequently, *: = *; 

and /: = /;, then based on Theorem 1, it is obtained that �-P = �-Q and �1P = �1Q. By using the properties 

of the union on two sets and based on the definition of E�O,Z� it is obtained that �-P ∪ �1P = �-Q ∪ �1Q⟺E�O,Z��*:, /:� = E�O,Z��*;, /;�. 
Therefore, E�O,Z�: 3 × 8 → 5��� is well-defined. Thus, E�O,Z�: 3 × 8 → 5��� is a function. In other words, 

based on Proposition 1, it is proven that �E�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over 

universe �. Furthermore, based on Definition 5, it is obtained that for any * ∈ 3 and / ∈ 8, there is at least 

one element in each of �- and �1, and thus �- ∪ �1 ≠ ∅. In other words, E�O,Z��*, /� ≠ ∅. ■ 

Hence, it is obtained that the definition of OR operation of �4O , 3� and �7Z, 8� is  �4g, 3� ∨[ �7Z , 8� = �E�O,Z�, 3 × 8�, 
where E�O,Z��*, /� = b4O�*� ∪ 7Z�/�c = �- ∪ �1 for all �*, /� ∈ 3 × 8. 

Example 7. Let � = ���:, 0.2�, ��;, 0.8�, ��<, 0.5�� and � = ���:, 0.8�, ��;, 0.3�, ��<, 0.2��. 

It is obtained that ��, �� = ��:, �0.2, 0.8��, ��;, �0.8, 0.3��, ��<, �0.5, 0.2���, 
and based on Definition 4, for all * ∈ 3 and / ∈ 8 there is at least one element in each of �- and �1. 

Consequently, �- ∪ �1 ≠ ∅. In other words, E�O,Z��*, /� ≠ ∅.  

Furthermore, it is obtained that �E�O,Z�, 3 × 8� =
⎩⎪⎪
⎨⎪
⎪⎧��0.2, 0.8�, ��:, �;, �<��, ��0.2, 0.3�, ��:, �;, �<��,��0.2, 0.2�, ��:, �;, �<��, ��0.8, 0.8�, ��:, �;��, ��0.8, 0.3�, ��;, �<��, ��0.8, 0.2�, ��:, �;, �<��,��0.5, 0.8�, ��:, �;, �<��, ��0.5, 0.3�, ��;, �<��, ��0.5, 0.2�, ��:, �;, �<�� ⎭⎪⎪

⎬⎪
⎪⎫

 

 

Proposition 10. If �4O , 3� and �7Z, 8� are two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set � then �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over the universal set �, 

where H�O,Z�: 3 × 8 → 5��� 

Is defined as H�O,Z��*, /� = �- ∩ �1 for all * ∈ 3 and / ∈ 8. Furthermore, H�O,Z��*, /� ≠ ∅ if one of the 

following statements is satisfied. 

(i) � ⊆ � and / ≤ * for all * ∈ 3 and / ∈ 8 

(ii) � ⊆ � and * ≤ / for all * ∈ 3 and / ∈ 8 

(iii) 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8.  

Proof. 

(i) Let �*:, /:�, �*;, /;� be any element of �3 × 8� where �*:, /:� = �*;, /;�. Consequently, *: = *; and /: = /;, then based on Theorem 1, it is obtained that �-P = �-Q and  �1P = �1Q. By using the properties 

of intersection on two sets and based on the definition of H�O,Z�, it is obtained that �-P ∩ �1P = �-Q ∩ �1Q⟺ H�O,Z��*:, /:� = H�O,Z��*;, /;�. 
Therefore, H�O,Z�: 3 × 8 → 5��� is well-defined. Thus, H�O,Z�: 3 × 8 → 5��� is a function. In other 

words, based on Proposition 1, it is proven that �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over universe �.  

(ii) Let �, � be any element of ℱ���, * be any element of 3, and / be any element of 8  H�O,Z��*, /� = �- ∩ �1   = �� ∈ �| ���� ≥ *� ∩ �� ∈ �| ���� ≥ /�  = �� ∈ �| ���� ≥ * and ���� ≥ /�  

(a) If � ⊆ � then based on Definition 2, it is obtained that ���� ≤ ���� for all � ∈ � and it is known 

that / ≤ *, so it is obtained that H�O,Z��*, /� = �- ∩ �1  = �� ∈ �|/ ≤ * ≤  ���� ≤ ���� and ���� ≥ /�  = �� ∈ �| ���� ≥ *�  = �-  
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 ≠ ∅  

It is now proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

(b) If � ⊆ � then, based on Definition 2, it is obtained that ���� ≤ ���� for all � ∈ � and it is known 

that * ≤ /, so it is obtained that H�O,Z��*, /� = �- ∩ �1  = �� ∈ �|���� ≥ * and * ≤ / ≤  ���� ≤ �����  = �� ∈ �|���� ≥ /�  = �1  ≠ ∅  

It is now proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

(c) Because 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8 

then � ∈ �i and � ∈ �i, therefore � ∈ �i ∩ �i. Consequently, �i ∩ �i ≠ ∅.  In other words, 

because for some h ∈ 3 ∩ 8 there exists � ∈ �i ∩ �i , it is obtained that �- ∩ �1 ≠ ∅. Thus, it is 

proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

Hence, H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8 if (a), (b), or (c) is satisfied.  

From (i) and (ii), it is obtained that �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over a 

universal set � and H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. ■ 

Thus, it is obtained that the definition of AND operation of �4O , 3� and �7Z, 8� is �4g, 3� ∧[ �7Z , 8� = �H�O,Z�, 3 × 8�, 
where H�O,Z��*, /� = b4O�*� ∩ 7Z�/�c = �- ∩ �1 for all �*, /� ∈ 3 × 8. 

Example 8. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.3�, ��V, 0��             
and � = ���:, 0.5�, ��;, 0.9�, ��<, 0.1�, ��U, 1�, ��V, 0.3��. 

Consequently, ���� ≤ ���� for all � ∈ �, so based on Definition 2, it is obtained that � ⊆ � 

and that ��, �� = t��:, �0.4, 0.5��, ��;, �0.8, 0.9��, ��<, �0.1, 0.1��, ��U, �0.3, 1��, ��V, �0, 0.3�� u 

Also, H�O,Z��*, /� ≠ ∅ where / ≤ * for all * ∈ 3 and / ∈ 8. 

Furthermore, it is obtained that  

�H�O,Z�, 3 × 8� = v ��0.4, 0.3�, ��:, �;��, ��0.4, 0.1�, ��:, �;��, ��0.8, 0.5�, ��;��,��0.8, 0.1�, ��;��, ��0.8, 0.3�, ��;��, ��0.1, 0.1�, ��:, �;, �<, �U��,��0.3, 0.1�, ��:, �;, �U��, ��0.3, 0.3�, ��:, �;, �U�� w 

 
 

4 CONCLUSIONS 

Based on the discussion results, the following provisional results were obtained. 

1. The pair �4O , 3� is a soft set formed from a fuzzy subset �: � → [0,1] where 4O: 3 → 5��� which satisfies 

the formation of soft sets. Furthermore, it was obtained that 

a. A soft set formed from a fuzzy subset � is a subset of the soft set that is formed from a fuzzy subset � 

over the same universal set if Im��� ⊆ Im��� and  � ⊆ �. 

b. The complement of a soft set formed from a fuzzy subset � over a universal set � is a soft set formed 

from the same fuzzy subset.  

c. The complement of a soft set formed from a fuzzy subset � is not equal to a soft set formed from the 

complement of a fuzzy subset � over the same universal set.  

d. The negation of a soft set formed from a fuzzy subset � over a universal set � is a soft set formed from 

the same fuzzy subset. Furthermore, equality was obtained in that the image of a soft set complement 

is equal to the image of a soft set formed from its fuzzy subset complement. 

2. The results of the intersection, union, OR, and AND operations of two soft sets formed from fuzzy subsets 

are as follows. 

a. The soft set formed from the intersection of two fuzzy subsets � and � is the subset of the intersection 

of two soft sets formed from fuzzy subsets � and �, respectively, over the same universal set if     Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��. 
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b. The soft set formed from the union of two fuzzy subsets � and � is the subset of the intersection of two 

soft sets formed from the fuzzy subsets � and �, respectively, over the same universal set if  �i ⊆ �i 

when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

c. The result of the OR operation of two soft sets formed from fuzzy subsets � and �, respectively, is the 

soft set formed from the pair of two fuzzy subsets ��, �� over the same universal set. 

d. The result of AND operation of two soft sets formed from fuzzy subsets � and �, respectively, is the 

soft set formed from the pair of two fuzzy subsets ��, �� over the same universal set. If �H�O,Z�, 3 × 8� 

the result of the AND operation of soft sets �4O , 3� and �7Z , 8� then the sufficient condition H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8 is 

(i) � ⊆ � and / ≤ *,  

(ii) � ⊆ � and * ≤ /, or  

(iii) 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8.  
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Abstract. Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set formed from 

a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set formed from a fuzzy subset, the 

parameter used is the image of a fuzzy subset which is then mapped to the collection of all subsets of a universal set. 

This research aimed to explain the construction of soft sets formed from fuzzy subsets. Then, to prove the validity of 

the properties of subsets and complements on soft sets formed from a fuzzy subset based on the properties of subsets 

and complements on soft sets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets formed from 

fuzzy subsets. This research showed that functions formed from a fuzzy subset met the requirements for forming soft 
sets. Also, the sufficient condition obtained was that a soft set formed from a fuzzy subset is a subset of other soft sets. 

The complementary properties of a soft set formed from a fuzzy subset were also obtained. Furthermore, it was found 

that the soft set formed from the intersection of two fuzzy subsets is a subset of the intersection of two soft sets formed 

from the two fuzzy subsets. This case also applied to union operations. Furthermore, the result of the mapping of the 

soft set formed from the union of the two fuzzy subsets was the subset of the mapping results of the soft set formed 

from the OR operation of the two soft sets formed from each of these fuzzy subsets. Then, for the AND operation, the 
reverse was true using the intersection operation. 

Keywords: a fuzzy subset, soft sets, soft sets formed from fuzzy subsets. 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and 

which are not members. Members of a set are objects that have certain similarities [1]. The level of similarity 

of objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping 

objects using varying degrees of similarity. The grouping process, which tends to show varying levels of 

similarity, makes it difficult to group using concepts from classical set theory. Therefore, a more relevant 
theory is needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 
The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 

character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 
object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterized subsets in a universe set.  
In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. A soft set formed from a fuzzy subset is a special form of a soft set in 
its parameter set. In a soft set formed from a fuzzy subset, the parameter used is the image of a fuzzy subset 

which is then mapped to a collection of all subsets of a universal set.  
As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 

decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy and soft sets and generalizes soft sets. Irfan Ali and Shabir  [8] developed the theory. To address 

decision-making problems based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets of 

fuzzy soft sets. They initiated an adjustable decision-making scheme using fuzzy soft sets [9], followed by a 

generalized soft fuzzy set [10] and its application to the student ranking system [11].  

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 
the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 

formed from fuzzy subsets. 

 

1.1  Fuzzy Subsets 

Definition 1. [3] Let non-empty set �. A fuzzy subset � of � is defined as a mapping �: � →  [0,1] 
The function � is called a fuzzy subset of � and can be expressed by � = ��, ������� ∈ ��, where ���� is 

the membership degree of � ∈ � for a fuzzy subset �. The collection of all fuzzy subsets of � denoted by ℱ���, i.e., ℱ��� = ��|�: � → [0,1]�. 
 

Definition 2. [3] Let �, � ∈  ℱ���. If ���� ≤ ���� for all  � ∈ �, then � is contained in � and can be written � ⊆ � �� ⊇ ��. If � ⊆ � and � ⊇ � then � is equal to � and can be written � = �.  
 

Definition 3. [3] Let � be a fuzzy subset of �. The complement of � is the fuzzy subset ��, where �����  =  1 − ���� 
 

Definition 4. [3] Let �, � ∈ ℱ���. The intersection and union of � and � is the fuzzy subsets � ∩ � and � ∪ �, 

where �� ∩ ����� = min�����, �����  =  ���� ∧ ���� �� ∪ ����� = max�����, �����  =  ���� ∨ ���� 
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Definition 5. [3] Let � ∈ ℱ���. For all * ∈ [0,1] can be defined * −level subset �* − +�,� of �, which is 

denoted �-, i.e. �- = ��|� ∈ �, ���� ≥ *� 

 

Theorem 1. [12] Let �, � ∈ ℱ���, for all *, / ∈ [0,1] the following properties hold true  

1) � ⊆  � ⇒ �-  ⊆ �-  

2) * ≤ / ⇒ �1  ⊆  �- 

3) * = / ⇒ �1 = �-  

4) � = � ⟺ �- = �-  
 

Theorem 2. [13] Let �, � ∈ ℱ���, for all * ∈ [0,1] the following properties hold true  

1) �� ∪ ��- = �- ∪ �- 
2) �� ∩ ��- = �- ∩ �-  

 

1.3 Soft Sets 

Definition 6. [2] Let � be a universal set and 3 be a set of parameters. A pair �4, 3� is called a soft set over � where 4 is a mapping given by 4: 3 → 5��� 

For 6 ∈ 3,  4�6� may be considered as the set 6-approximate elements of the soft set �4, 3�. A soft set over � can be expressed by �4, 3�  =  �6, 4�6���6 ∈ 3�.  

Definition 7. [14] Let �4, 3� and �7, 8� be two soft sets over �.  Then �4, 3� is called a soft subset of �7, 8� 

denoted by �4, 3� ⊆9 �7, 8�, if 

1) 3 ⊆ 8 and 

2) for all 6 ∈ 3, 4�6� ⊆ 7�6�.  

Definition 8. [14] Let �4, 3� and �7, 8� be two soft sets over �. Then �4, 3� and �7, 8� are said to be equal, 

denoted by �4, 3� = �7, 8�, if �4, 3� ⊆9 �7, 8� and �7, 8� ⊆9 �4, 3�.  

Definition 9. [15] Let 3 = �6:, 6;, 6<, … , 6>� be a set of parameters. The complement of 3 denoted by       ¬3 = �¬6:, ¬6;, ¬6<, … , ¬6>� where ¬6@ is “not 6@”  and ¬�¬6@� = 6@ , for all A = 1,2, … , C.  

Definition 10. [16] The relative complement of a soft set �4, 3� is denoted by �4, 3�D  and is defined by �4, 3�D = �4D , 3�, where 4D: 3 → 5��� is a mapping given by 4D�6� = � − 4�6�, for all 6 ∈ 3.  

Definition 11. [17] Bi-intersection of two soft sets �4, 3� and �7, 8� over � is defined to be the soft set �E, F� 

where F = 3 ∩ 8 and for all G ∈ F, E�G� = 4�G� ∩ 7�G�. The bi-intersection of �4, 3� and �7, 8� is denoted 

by �4, 3� ∩9 �7, 8� = �E, F�.  

Definition 12. [15] Let �4, 3� and �7, 8� be two soft sets over �.  The union of �4, 3� and �7, 8� is defined 

to be a soft set �H, I�, where I = 3 ∪ 8 and for all G ∈ I satisfying the following conditions 

H�G� = J                     4�G�,                  G ∈ 3 − 8                          7�G�,                  G ∈ 8 − 3      4�G� ∪ 7�G�,                   G ∈ 3 ∩ 8.  

The union of �4, 3� and �7, 8� is denoted by �4, 3� ⨆ �7, 8� = �H, I�.  

Definition 13. [15] Let �4, 3� and �7, 8� be two soft sets over �. Operation OR from �4, 3� and �7, 8�, denoted by �4, 3� ∨9 �7, 8�, is defined to be a soft set �E, 3 × 8�, where E�6, M� = 4�6� ∪ 7�M�, for 

all �6, M� ∈ 3 × 8.  

Definition 14. [15] Let �4, 3� and �7, 8� be two soft sets over �. Operation AND from �4, 3� and �7, 8�, denoted by �4, 3� ∧9 �7, 8�, is defined to be a soft set �H, 3 × 8�, where H�6, M� = 4�6� ∩ 7�M�, for 

all �6, M� ∈ 3 × 8.  
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2 RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and * −cut on fuzzy subsets. 
2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 
4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 

5. Writing a conclusion. 

 

 

3 RESULT AND DISCUSSION 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

Soft sets can be formed from fuzzy subsets, i.e., a soft set with its parameters is the image of a fuzzy 

subset stated in the following proposition.  

Proposition 1. Let � be a universal set, �: � → [0,1] be a fuzzy set where 3 = Im��� ⊆ [0,1]. A pair �4O , 3� 

is a soft set where 4O: 3 → 5��� which is defined as 4O�*� = �- , for all * ∈ 3. Furthermore, soft set �4O , 3� 

is called a soft set over �, formed from a fuzzy subset �. 

Proof. Let *:, *; be any element of 3 where *: = *;, so based on Theorem 1 and the definition of 4O, it is 

obtained that �-P = �-Q ⟺ 4O�*:� = 4O�*;�, thus 4O: 3 → 5��� is well defined. Therefore,             4O: 3 →5��� is a function. In other words, based on Definition 6, it was proved that �4O , 3� is a soft set over the 

universal set �. ■ 

Example 1. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.4�, ��V, 0.7��. 
Thus, the soft set �4O , 3� was obtained as follows.  �4O, 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��;, �V��, �0.8, ��;�� Y 

3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

This section presents the properties of subsets and complements that apply to soft sets formed from 
fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �4O, 3� is a subset of �7Z , 8� if 3 ⊆ 8 and � ⊆ �. 

Proof. It is known that 3 ⊆ 8 and based on Theorem 1, if � ⊆ �, then �- ⊆ �-. In other words, based on 

Proposition 1, it is obtained that 4O�*� ⊆ 7Z�*� for all * ∈ 3. Therefore, based on Definition 7, it is obtained 

that �4O , 3� ⊆[ �7Z , 8�. ∎ 

Example 2. Based on Example 1, a fuzzy subset � is obtained. Next, let the fuzzy subset � be given by         � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 

Therefore, it is obtained that 3 ⊆ 8 and ���� ≤ ���� for all  � ∈ �.  Furthermore, based on Definition 2, it 

is obtained that � ⊆ �. 

Next, it is obtained that �7Z , 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��:, �;, �V��, �0.8, ��;, �V�� Y 

Consequently, 4O�*� ⊆ 7Z�*� for all * ∈ 3.  

Thus, it was obtained that �4O, 3� ⊆[ �7Z , 8�. 

Based on Definition 10, it is known that the complement of a soft set �4, 3� is defined as �4D , 3�. Next, 

in this research, it is defined that �4O , 3�D = �4OD , 3� where 4OD�*� = � − 4O�*� for all * ∈ 3. The following 

proposition states �4O, 3�D
 as a soft set over a universal set � that is formed from a fuzzy subset �. 

Proposition 3. If �4O , 3� is a soft set formed from a fuzzy subset � over a universal set �, then �4O, 3�D
 is a 

soft set formed from a fuzzy subset � over a universal set �, where �4O, 3�D = �4OD , 3�. 

Proof. Let *:, *; be any element of 3 where *: = *;, so based on Theorem 1 and the definition of 4O, It is 

obtained that �-P = �-Q ⟺ 4O�*:� = 4O�*;�. Consequently, based on the definition of 4OD, it is obtained that 
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 � − 4O�*:� = � − 4O�*;� ⟺ 4OD�*:� = 4OD�*;�. Therefore, 4OD: 3 → 5��� is well-defined. Thus,        4OD: 3 → 5��� is a function. In other words, based on Proposition 1, it is proved that �4O, 3�D
 is a soft set 

formed from a fuzzy subset � over universe �. ■  

Next, the soft set �4O, 3�D
is called the complement of a soft set �4O, 3�. 

It is known, based on Definition 3, that for any fuzzy subset �, there is always a complement of � that 

is denoted by �D . The complement of a soft set formed from a fuzzy subset is not equal to a soft set formed 
from the complement of a fuzzy subset, which is shown in the following example and proposition. 

Example 3. Based on Example 1, a fuzzy subset � is obtained.  

Therefore, �4OD , 3 � = X �0.1, ∅�, �0.4, ��<��,�0.7, ��:, �<, �U��, �0.8, ��:, �<, �U, �V�� Y 

and �4O_ , 3 � = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �<, �U��,�0.7, ��<��, �0.8, ��<�� Y 

It is obtained that �4OD , 3� ≠ �4O_ , 3�. In other words, �4O, 3�D ≠ �4O_ , 3�. 

Proposition 4. If �4O, 3� is a soft set formed from a fuzzy subset � over a universal set �, then                 �4O, 3�D ≠ �4O_ , 3�. 

It is known that based on Definition 9, for any parameter set 3, there is always a complement of 3 

denoted by ¬3. Next, if a soft �4O, 3� exists, then ¬4O: ¬3 → 5���, defined by ¬4O�¬*� = 4O�1 − *� for 

all * ∈ 3, can be formed. It can be shown that �¬4O, ¬3� is a soft set formed from a fuzzy subset � over 

universe �, stated in the following proposition.  

Proposition 5. If �4O , 3� is a soft set formed from a fuzzy subset � over a universe �, then �¬4O, ¬3� is a 

soft set formed from a fuzzy subset � over a universe �. 

Proof. Let *:, *; be any element of 3 where *: = *;. Consequently, 1 − *: = 1 − *; so based on Theorem 

1 and the definition of ¬4O, It is obtained that ��:a-P� = ��:a-Q� ⟺ ¬4O�¬*:� = ¬4O�¬*;�.  Therefore, ¬4O: ¬3 → 5��� is well-defined. Thus, ¬4O: ¬3 → 5��� is a function. In other words, based on Proposition 

1, it is proved that  �¬4O, ¬3� is a soft set formed from a fuzzy subset � over universe �. ■  

Hereafter, �¬4O , ¬3� is called the negation of a soft set �4O , 3�. 
Proposition 6. Let �4O, 3� be a soft set formed from a fuzzy subset � over a universe �. If ���� ≠ 1 − * for 

all � ∈ � then ¬4OD�¬*� = 4O_�*� for all * ∈ 3. 

Proof. Let * be any element of 3. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  ¬4OD�¬*� = � − b¬4O�¬*�c  = � − 4O�1 − *�  = � − ��:a-�  = � − �� ∈ �|���� ≥ 1 − *�   = �� ∈ �|���� < 1 − *�  

on the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 4O_�*�  = ��D�-  = �� ∈ �|�D��� ≥ *�  = �� ∈ �|1 − ���� ≥ *�  = �� ∈ �|���� ≤ 1 − *�   

Because ���� ≠ 1 − * for all � ∈ �, it is obtained that 4O_�*� = �� ∈ �|���� < 1 − *�  

Thus, it is proven that if ���� ≠ 1 − * for all � ∈ � then ¬4OD�¬*� = 4O_�*� for all * ∈ 3. ∎ 

Example 4. Let � = ���:, 0.5�, ��;, 0.7�, ��<, 0.2�, ��U, 1�, ��V, 0.9�, ��f, 0��. 

Therefore, �¬4OD , ¬3� = X�¬0, ��:, �;, �<, �V, �f��, �¬0.2, ��:, �;, �<, �f��, �¬0.5, ��<, �f��,�¬0.7, ��<, �f��, �¬0.9, ��f��, �¬1, ∅� Y 

on the other hand, because ���� ≠ 1 − * for all � ∈ �, then it is obtained that 
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�4O_ , 3� = X�0, ��:, �;, �<, �V, �f��, �0.2, ��:, �;, �<, �f��, �0.5, ��<, �f��,�0.7, ��<, �f��, �0.9, ��f��, �1, ∅� Y 

Consequently, ¬4OD�¬*� = 4O_�*� for all * ∈ 3. 

 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 
which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z , 8� if Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��.  

Proof. Based on Definition 7, To prove that �Eg∩Z , F� ⊆[ �4O , 3� ∩[ �7Z , 8�, it must be proven that                      F ⊆ 3 ∩ 8 and Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

(i) Let G be any element of Im�� ∩ �� so there exists � ∈ � such that G = �� ∩ �����, then based on 

Definition 4, it is obtained that G = min�����, �����. 

1) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���. Next, as     Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

2) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���.  Next, as Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

From 1) and 2), it is obtained that Im�� ∩ �� ⊆ Im��� ∩ Im���, so based on Proposition 1, it is proven 

that F ⊆ 3 ∩ 8. 

(ii) Let h be any element of F. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  EO∩Z�h� = �� ∩ ��i  = �i ∩ �i  = 4O�h� ∩ 7Z�h�  = �4O ∩ 7Z��h�  

It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

From (i) and (ii), it is obtained that �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z, 8�.∎ 

Example 5. Let � = ���:, 0.8�, ��;, 0.1�, ��<, 0.7�, ��U, 0.4�, ��V, 0.7�� 

and � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 
Therefore, Im(�� ⊆ Im(�� and 3 ∩ 8 = �0.1, 0.4, 0.7, 0.8�  

On the other hand, based on Definition 4, it is obtained that F = �0.7, 0.1, 0.4�  

Thus, F ⊆ 3 ∩ 8. 

Furthermore, it is obtained that �Eg∩Z , F� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y 

and b�4O ∩ 7Z�, Fc = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y. 
It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Consequently, Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

Thus, �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z , 8�. 

Proposition 8. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8� if �i ⊆ �i when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

Proof. Based on Definition 7, to prove that �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8�, it must be proven that I ⊆ 3 ∪ 8 

and Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all h ∈ I.  

(i) Let G be any element of Im�� ∪ �� so there exists � ∈ � such that G = �� ∪ �����, then based on 

Definition 4, it is obtained that G = max�����, �����. 

1) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

2) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  
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From 1) and 2), it is obtained that G ∈ Im��� or G ∈ Im��� in other words G ∈ Im��� ∪ Im���. 

Consequently, Im�� ∪ �� ⊆ Im��� ∪ Im���, so based on Proposition 1, it is proven that I ⊆ 3 ∪ 8. 

 

 

 

(ii) Based on Definition 12, for all h ∈ I holds 

�4O ∪ 7Z��h� = J                     4O�h�,                  h ∈ 3 − 8                          7Z�h�,                  h ∈ 8 − 3      4O�h� ∪ 7Z�h�,                  h ∈ 3 ∩ 8.  

1) If h ∈ 3 − 8 

Let h be any element of 3 − 8 and if h ∈ 3 − 8 then �i ⊆ �i. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  HO∪Z�h� = �� ∪ ��i   = �i ∪ �i  = �i  

     = 4O�h�  

              It is obtained that HO∪Z�h� = 4O�h� when h ∈ 3 − 8. 

2) If h ∈ 8 − 3 

Let h be any element of 8 − 3 and if h ∈ 8 − 3 then �i ⊆  �i . Then, based on Theorem 2 and 

Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i  = �i ∪ �i  = �i  = 7Z�h�  

              It is obtained that HO∪Z�h� = 7Z�h� when h ∈ 8 − 3. 

3) If h ∈ 3 ∩ 8 

 Let h be any element of 3 ∩ 8. Based on Theorem 2 and Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i  = �i ∪ �i  = 4O�h� ∪ 7Z�h�  

 It is obtained that HO∪Z�h� = 4O�h� ∪ 7Z�h� when h ∈ 3 ∩ 8. 

From 1), 2), and 3), it is obtained that Hg∪Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that                          Hg∪Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ I. 

From (i) and (ii), it is obtained that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�. ∎ 

Example 6. Let � = ���:, 0�, ��;, 0.2�, ��<, 0.4�, ��U, 0.9�� 

and � = ���:, 0�, ��;, 0.2�, ��<, 0.6�, ��U, 0.8��. 
Therefore, 3 ∪ 8 = �0, 0.2, 0.4, 0.6, 0.8, 0.9�  

on the other hand, based on Definition 4, it is obtained that I = �0, 0.2, 0.6, 0.9�  

Thus, I ⊆ 3 ∪ 8. 

Next, it is obtained that �Hg∪Z , I� = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y 

and b�4O ∪ 7Z�, Ic = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y. 

It is obtained that �i ⊆ �i when h ∈ 3 − 8 and �i ⊆ �i when h ∈ 8 − 3. 

Furthermore, it is obtained that Hg∪Z�h� = �4O ∪ 7Z��h�. Consequently, Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all         h ∈ I. 

Thus, it is obtained that �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z , 8�. 
Proposition 9. If �4O, 3� and �7Z, 8� are two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set � then �E�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over the universal set �, 

where  E�O,Z�: 3 × 8 → 5��� 
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is defined as E�O,Z��*, /� = �- ∪ �1 for all * ∈ 3 and / ∈ 8. 

Proof. Let �*:, /:�, �*;, /;� be any element of �3 × 8� where �*:, /:� = �*;, /;�. Consequently, *: = *; 

and /: = /;, then based on Theorem 1, it is obtained that �-P = �-Q and �1P = �1Q. By using the properties 

of the union on two sets and based on the definition of E�O,Z� it is obtained that �-P ∪ �1P = �-Q ∪ �1Q⟺E�O,Z��*:, /:� = E�O,Z��*;, /;�. 
Therefore, E�O,Z�: 3 × 8 → 5��� is well-defined. Thus, E�O,Z�: 3 × 8 → 5��� is a function. In other words, 

based on Proposition 1, it is proven that �E�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over 

universe �. Furthermore, based on Definition 5, it is obtained that for any * ∈ 3 and / ∈ 8, there is at least 

one element in each of �- and �1, and thus �- ∪ �1 ≠ ∅. In other words, E�O,Z��*, /� ≠ ∅. ■ 

Hence, it is obtained that the definition of OR operation of �4O , 3� and �7Z , 8� is  �4g, 3� ∨[ �7Z , 8� = �E�O,Z�, 3 × 8�, 
where E�O,Z��*, /� = b4O�*� ∪ 7Z�/�c = �- ∪ �1 for all �*, /� ∈ 3 × 8. 

Example 7. Let � = ���:, 0.2�, ��;, 0.8�, ��<, 0.5�� and � = ���:, 0.8�, ��;, 0.3�, ��<, 0.2��. 

It is obtained that ��, �� = ��:, �0.2, 0.8��, ��;, �0.8, 0.3��, ��<, �0.5, 0.2���, 
and based on Definition 4, for all * ∈ 3 and / ∈ 8 there is at least one element in each of �- and �1. 

Consequently, �- ∪ �1 ≠ ∅. In other words, E�O,Z��*, /� ≠ ∅.  

Furthermore, it is obtained that �E�O,Z�, 3 × 8� =
⎩⎪⎪
⎨⎪
⎪⎧��0.2, 0.8�, ��:, �;, �<��, ��0.2, 0.3�, ��:, �;, �<��,��0.2, 0.2�, ��:, �;, �<��, ��0.8, 0.8�, ��:, �;��, ��0.8, 0.3�, ��;, �<��, ��0.8, 0.2�, ��:, �;, �<��,��0.5, 0.8�, ��:, �;, �<��, ��0.5, 0.3�, ��;, �<��, ��0.5, 0.2�, ��:, �;, �<�� ⎭⎪⎪

⎬⎪
⎪⎫

 

 

Proposition 10. If �4O, 3� and �7Z , 8� are two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set � then �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over the universal set �, 

where H�O,Z�: 3 × 8 → 5��� 

Is defined as H�O,Z��*, /� = �- ∩ �1 for all * ∈ 3 and / ∈ 8. Furthermore, H�O,Z��*, /� ≠ ∅ if one of the 

following statements is satisfied. 

(i) � ⊆ � and / ≤ * for all * ∈ 3 and / ∈ 8 

(ii) � ⊆ � and * ≤ / for all * ∈ 3 and / ∈ 8 

(iii) 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8.  

Proof. 

(i) Let �*:, /:�, �*;, /;� be any element of �3 × 8� where �*:, /:� = �*;, /;�. Consequently, *: = *; and /: = /;, then based on Theorem 1, it is obtained that �-P = �-Q and  �1P = �1Q. By using the properties 

of intersection on two sets and based on the definition of H�O,Z�, it is obtained that �-P ∩ �1P = �-Q ∩ �1Q⟺ H�O,Z��*:, /:� = H�O,Z��*;, /;�. 
Therefore, H�O,Z�: 3 × 8 → 5��� is well-defined. Thus, H�O,Z�: 3 × 8 → 5��� is a function. In other 

words, based on Proposition 1, it is proven that �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over universe �.  

(ii) Let �, � be any element of ℱ���, * be any element of 3, and / be any element of 8  H�O,Z��*, /� = �- ∩ �1  = �� ∈ �| ���� ≥ *� ∩ �� ∈ �| ���� ≥ /�  = �� ∈ �| ���� ≥ * and ���� ≥ /�  
(a) If � ⊆ � then based on Definition 2, it is obtained that ���� ≤ ���� for all � ∈ � and it is known 

that / ≤ *, so it is obtained that H�O,Z��*, /� = �- ∩ �1  = �� ∈ �|/ ≤ * ≤  ���� ≤ ���� and ���� ≥ /�  = �� ∈ �| ���� ≥ *�  = �-  ≠ ∅  
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It is now proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

(b) If � ⊆ � then, based on Definition 2, it is obtained that ���� ≤ ���� for all � ∈ � and it is known 

that * ≤ /, so it is obtained that H�O,Z��*, /� = �- ∩ �1  = �� ∈ �|���� ≥ * and * ≤ / ≤  ���� ≤ �����  = �� ∈ �|���� ≥ /�  = �1  ≠ ∅  

It is now proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

(c) Because 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8 

then � ∈ �i and � ∈ �i, therefore � ∈ �i ∩ �i. Consequently, �i ∩ �i ≠ ∅.  In other words, 

because for some h ∈ 3 ∩ 8 there exists � ∈ �i ∩ �i , it is obtained that �- ∩ �1 ≠ ∅. Thus, it is 

proven that H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. 

Hence, H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8 if (a), (b), or (c) is satisfied.  

From (i) and (ii), it is obtained that �H�O,Z�, 3 × 8� is a soft set formed from a fuzzy subset ��, �� over a 

universal set � and H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8. ■ 

Thus, it is obtained that the definition of AND operation of �4O, 3� and �7Z , 8� is �4g, 3� ∧[ �7Z , 8� = �H�O,Z�, 3 × 8�, 
where H�O,Z��*, /� = b4O�*� ∩ 7Z�/�c = �- ∩ �1 for all �*, /� ∈ 3 × 8. 

Example 8. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.3�, ��V, 0��             
and � = ���:, 0.5�, ��;, 0.9�, ��<, 0.1�, ��U, 1�, ��V, 0.3��. 

Consequently, ���� ≤ ���� for all � ∈ �, so based on Definition 2, it is obtained that � ⊆ � 

and that ��, �� = t��:, �0.4, 0.5��, ��;, �0.8, 0.9��, ��<, �0.1, 0.1��, ��U, �0.3, 1��, ��V, �0, 0.3�� u 

Also, H�O,Z��*, /� ≠ ∅ where / ≤ * for all * ∈ 3 and / ∈ 8. 

Furthermore, it is obtained that  

�H�O,Z�, 3 × 8� = v ��0.4, 0.3�, ��:, �;��, ��0.4, 0.1�, ��:, �;��, ��0.8, 0.5�, ��;��,��0.8, 0.1�, ��;��, ��0.8, 0.3�, ��;��, ��0.1, 0.1�, ��:, �;, �<, �U��,��0.3, 0.1�, ��:, �;, �U��, ��0.3, 0.3�, ��:, �;, �U�� w 

 
 

4 CONCLUSIONS 

Based on the discussion results, the following provisional results were obtained. 

1. The pair �4O , 3� is a soft set formed from a fuzzy subset �: � → [0,1] where 4O: 3 → 5��� which satisfies 

the formation of soft sets. Furthermore, it was obtained that 

a. A soft set formed from a fuzzy subset � is a subset of the soft set that is formed from a fuzzy subset � 

over the same universal set if Im��� ⊆ Im��� and  � ⊆ �. 

b. The complement of a soft set formed from a fuzzy subset � over a universal set � is a soft set formed 
from the same fuzzy subset.  

c. The complement of a soft set formed from a fuzzy subset � is not equal to a soft set formed from the 

complement of a fuzzy subset � over the same universal set.  

d. The negation of a soft set formed from a fuzzy subset � over a universal set � is a soft set formed from 
the same fuzzy subset. Furthermore, equality was obtained in that the image of a soft set complement 

is equal to the image of a soft set formed from its fuzzy subset complement. 
2. The results of the intersection, union, OR, and AND operations of two soft sets formed from fuzzy subsets 

are as follows. 

a. The soft set formed from the intersection of two fuzzy subsets � and � is the subset of the intersection 

of two soft sets formed from fuzzy subsets � and �, respectively, over the same universal set if     Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��. 
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b. The soft set formed from the union of two fuzzy subsets � and � is the subset of the intersection of two 

soft sets formed from the fuzzy subsets � and �, respectively, over the same universal set if  �i ⊆ �i 

when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

c. The result of the OR operation of two soft sets formed from fuzzy subsets � and �, respectively, is the 

soft set formed from the pair of two fuzzy subsets ��, �� over the same universal set. 

d. The result of AND operation of two soft sets formed from fuzzy subsets � and �, respectively, is the 

soft set formed from the pair of two fuzzy subsets ��, �� over the same universal set. If �H�O,Z�, 3 × 8� 

the result of the AND operation of soft sets �4O, 3� and �7Z , 8� then the sufficient condition H�O,Z��*, /� ≠ ∅ for all * ∈ 3 and / ∈ 8 is 

(i) � ⊆ � and / ≤ *,  

(ii) � ⊆ � and * ≤ /, or  

(iii) 3 ∩ 8 ≠ ∅ and there exists � ∈ � such that ���� ≥ h and ���� ≥ h for some h ∈ 3 ∩ 8.  
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ABSTRACT 

Article History: 
Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set 

formed from a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set 

formed from a fuzzy subset, the parameter used is the image of a fuzzy subset which is then 

mapped to the collection of all subsets of a universal set. This research explains the construction 

of soft sets formed from fuzzy subsets. We provide the sufficient condition that a soft set formed 

from a fuzzy subset is a subset of another soft set. Also, give some properties of the soft sets 

formed from a fuzzy subset related to complement and operations concepts in soft sets 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and 

which are not members. Members of a set are objects that have certain similarities [1]. The level of similarity 
of objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping 

objects using varying degrees of similarity. The grouping process, which tends to show varying levels of 
similarity, makes it difficult to group using concepts from classical set theory. Therefore, a more relevant 

theory is needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 

character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 
membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 
Molodtsov explained that a soft set is a collection of parameterization subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. A soft set formed from a fuzzy subset is a special form of a soft set in 

its parameter set. In a soft set formed from a fuzzy subset, the parameter used is the image of a fuzzy subset 

which is then mapped to a collection of all subsets of a universal set.  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 

decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy and soft sets and generalized soft sets. Irfan Ali and Shabir [8] developed the theory. To address 
decision-making problems based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets of 

fuzzy soft sets. They initiated an adjustable decision-making scheme using fuzzy soft sets [9], followed by a 

generalized soft fuzzy set [10] and its application to the student ranking system [11].   

Research on soft sets has also been developed by integrating other fields, including algebra, and its 

applications in the real world. In the field of algebra, they include soft matrices introduced by Çaǧman and 

Enginoǧlu [12],  soft groups introduced by Aktaş and Cağman [6], soft semiring by Feng et al. [13], soft 

rings by Acar et al. [14], and soft modules by Sun et al.[15], which until now continue to develop, can see in 
[16], [17], [18], [19], [20], [21], [22], and [23]. Some applications of soft sets in the real world can see in 

[24], [25], [26], [27], [28], [29], [30], [31], [32] and much more. 

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 

formed from fuzzy subsets. 

 

2 RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and � −cut on fuzzy subsets. 
2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 
4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 
5. Writing a conclusion. 

 

2.1 Fuzzy Subsets 
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Definition 1. [3] Let non-empty set �. A fuzzy subset � of � is defined as a mapping �: � →  	0,1. 
The function � is called a fuzzy subset of � and can be expressed by � = ���, ������� ∈ ��, where ���� is 

the membership degree of � ∈ � for a fuzzy subset �. The collection of all fuzzy subsets of � denoted by ℱ���, i.e., ℱ��� = ��|�: � → 	0,1�. 

Definition 2. [3] Let �, � ∈  ℱ���. If ���� ≤ ���� for all  � ∈ �, then � is contained in � and can be written � ⊆ � �� ⊇ ��. If � ⊆ � and � ⊇ � then � is equal to � and can be written � = �.  

Definition 3. [3] Let � be a fuzzy subset of �. The complement of � is the fuzzy subset � , where � ���  =  1 − ���� 

Definition 4. [3] Let �, � ∈ ℱ���. The intersection and union of � and � is the fuzzy subsets � ∩ � and � ∪ �, 

where �� ∩ ����� = min�����, �����  =  ���� ∧ ���� �� ∪ ����� = max�����, �����  =  ���� ∨ ���� 

 

2.2 * −Cut on Fuzzy Subsets 

Definition 5. [3] Let � ∈ ℱ���. For all � ∈ 	0,1 can be defined �-level subset �� − +�,� of �, which is 

denoted �-, i.e. �- = ��|� ∈ �, ���� ≥ �� 

 

Theorem 1. [33] Let �, � ∈ ℱ���, for all �, / ∈ 	0,1 the following properties hold true  

1) � ⊆  � ⇒ �-  ⊆ �-  

2) � ≤ / ⇒ �1  ⊆  �- 

3) � = / ⇒ �1 = �-  

4) � = � ⟺ �- = �-  

Theorem 2. [34] Let �, � ∈ ℱ���, for all � ∈ 	0,1, the following properties hold true  

1) �� ∪ ��- = �- ∪ �- 

2) �� ∩ ��- = �- ∩ �-  

 

2.3 Soft Sets 

Definition 6. [2] Let � be a universal set and 3 be a set of parameters. A pair �4, 3� is called a soft set over � where 4 is a mapping given by 4: 3 → 5��� 

For 6 ∈ 3,  4�6� may be considered as the set 6-approximate elements of the soft set �4, 3�. A soft set over � can be expressed by �4, 3�  =  ��6, 4�6���6 ∈ 3�.  

Definition 7. [35] Let �4, 3� and �7, 8� be two soft sets over �.  Then �4, 3� is called a soft subset of �7, 8� 

denoted by �4, 3� ⊆9 �7, 8�, if 

1) 3 ⊆ 8 and 

2) for all 6 ∈ 3, 4�6� ⊆ 7�6�.  

Definition 8. [35] Let �4, 3� and �7, 8� be two soft sets over �. Then �4, 3� and �7, 8� are said to be equal, 

denoted by �4, 3� = �7, 8�, if �4, 3� ⊆9 �7, 8� and �7, 8� ⊆9 �4, 3�.  
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Definition 9. [36] Let 3 = �6:, 6;, 6<, … , 6>� be a set of parameters. The complement of 3 denoted by       ¬3 = �¬6:, ¬6;, ¬6<, … , ¬6>� where ¬6@ is “not 6@”  and ¬�¬6@� = 6@ , for all A = 1,2, … , C.  

Definition 10. [37] The relative complement of a soft set �4, 3� is denoted by �4, 3�D  and is defined by �4, 3�D = �4D , 3�, where 4D: 3 → 5��� is a mapping given by 4D�6� = � − 4�6�, for all 6 ∈ 3.  

Definition 11. [13] Bi-intersection of two soft sets �4, 3� and �7, 8� over � is defined to be the soft set �E, F� 

where F = 3 ∩ 8 and for all G ∈ F, E�G� = 4�G� ∩ 7�G�. The bi-intersection of �4, 3� and �7, 8� is denoted 

by �4, 3� ∩9 �7, 8� = �E, F�.  

Definition 12. [36] Let �4, 3� and �7, 8� be two soft sets over �.  The union of �4, 3� and �7, 8� is defined 

to be a soft set �H, I�, where I = 3 ∪ 8 and for all G ∈ I satisfying the following conditions 

H�G� = J                     4�G�,                  G ∈ 3 − 8                          7�G�,                  G ∈ 8 − 3      4�G� ∪ 7�G�,                   G ∈ 3 ∩ 8.  

The union of �4, 3� and �7, 8� is denoted by �4, 3� ⨆ �7, 8� = �H, I�.  

Definition 13. [36] Let �4, 3� and �7, 8� be two soft sets over �. Operation OR from �4, 3� and �7, 8�, denoted by �4, 3� ∨9 �7, 8�, is defined to be a soft set �E, 3 × 8�, where E�6, M� = 4�6� ∪ 7�M�, for 

all �6, M� ∈ 3 × 8.  

Definition 14. [36] Let �4, 3� and �7, 8� be two soft sets over �. Operation AND from �4, 3� and �7, 8�, denoted by �4, 3� ∧9 �7, 8�, is defined to be a soft set �H, 3 × 8�, where H�6, M� = 4�6� ∩ 7�M�, for 

all �6, M� ∈ 3 × 8.  

 

3 RESULT AND DISCUSSION 

This section explains that a soft set can be formed from the fuzzy subsets, with the parameter 

being the level subset obtained from the fuzzy subset. This section also provides the properties of 

soft sets formed by fuzzy sets related to subsets and operations concepts in the soft sets. 

 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

Soft sets can be formed from fuzzy subsets, i.e., a soft set with its parameters is the image of a fuzzy 

subset stated in the following proposition.  

Proposition 1. Let � be a universal set, �: � → 	0,1 be a fuzzy set where 3 = Im��� ⊆ 	0,1. A pair �4O , 3� 

is a soft set where 4O: 3 → 5��� which is defined as 4O��� = �- , for all � ∈ 3. Furthermore, soft set �4O , 3� 

is called a soft set over �, formed from a fuzzy subset �. 

Proof. Let �:, �; be any element of 3 where �: = �;, so based on Theorem 1 and the definition of 4O, it is 

obtained that �-P = �-Q ⟺ 4O��:� = 4O��;�, thus 4O: 3 → 5��� is well defined. Therefore,  4O: 3 → 5��� 

is a function. In other words, based on Definition 6, it was proved that �4O , 3� is a soft set over the universal 

set �. ■ 

Example 1. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.4�, ��V, 0.7��. 
Thus, the soft set �4O , 3� was obtained as follows.  

�4O, 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��;, �V��, �0.8, ��;�� Y 

 

3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

This section presents the properties of subsets and complements that apply to soft sets formed from 

fuzzy subsets. These properties are presented in the following proposition. 
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Proposition 2. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �4O, 3� is a subset of �7Z , 8� if 3 ⊆ 8 and � ⊆ �. 

Proof. It is known that 3 ⊆ 8 and based on Theorem 1, if � ⊆ �, then �- ⊆ �-. In other words, based on 

Proposition 1, it is obtained that 4O��� ⊆ 7Z��� for all � ∈ 3. Therefore, based on Definition 7, it is obtained 

that �4O , 3� ⊆[ �7Z , 8�. ∎ 

Example 2. Based on Example 1, a fuzzy subset � is obtained. Next, let the fuzzy subset � be given by         � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 

Therefore, it is obtained that 3 ⊆ 8 and ���� ≤ ���� for all  � ∈ �.  Furthermore, based on Definition 2, it 

is obtained that � ⊆ �. 

Next, it is obtained that �7Z , 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��:, �;, �V��, �0.8, ��;, �V�� Y 

Consequently, 4O��� ⊆ 7Z��� for all � ∈ 3. Thus, it was obtained that �4O, 3� ⊆[ �7Z, 8�. 

Based on Definition 10, it is known that the complement of a soft set �4, 3� is defined as �4D , 3�. Next, 

in this research, it is defined that �4O , 3�D = �4OD , 3� where 4OD��� = � − 4O��� for all � ∈ 3. The following 

proposition states �4O, 3�D
 as a soft set over a universal set � that is formed from a fuzzy subset �. 

Proposition 3. If �4O , 3� is a soft set formed from a fuzzy subset � over a universal set �, then �4O, 3�D
 is a 

soft set formed from a fuzzy subset � over a universal set �, where �4O, 3�D = �4OD , 3�. 

Proof. Let �:, �; be any element of 3 where �: = �;, so based on Theorem 1 and the definition of 4O, It is 

obtained that �-P = �-Q ⟺ 4O��:� = 4O��;�. Consequently, based on the definition of 4OD, it is obtained that � − 4O��:� = � − 4O��;� ⟺ 4OD��:� = 4OD��;�. Therefore, 4OD: 3 → 5��� is well-defined. Thus,      4OD: 3 → 5��� is a function. In other words, based on Proposition 1, it is proved that �4O, 3�D
 is a soft set 

formed from a fuzzy subset � over universe �. ■  

Next, the soft set �4O, 3�D
is called the complement of a soft set �4O, 3�. 

It is known, based on Definition 3, that for any fuzzy subset �, there is always a complement of � that 

is denoted by �D . The complement of a soft set formed from a fuzzy subset is not equal to a soft set formed 

from the complement of a fuzzy subset, which is shown in the following example and proposition. 

Example 3. Based on Example 1, a fuzzy subset � is obtained.  

Therefore, �4OD , 3 � = X �0.1, ∅�, �0.4, ��<��,�0.7, ��:, �<, �U��, �0.8, ��:, �<, �U, �V�� Y 

and �4O_ , 3 � = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �<, �U��,�0.7, ��<��, �0.8, ��<�� Y. 
It is obtained that �4OD , 3� ≠ �4O_ , 3�. In other words, �4O, 3�D ≠ �4O_ , 3�. 

Proposition 4. If �4O, 3� is a soft set formed from a fuzzy subset � over a universal set �, then                 �4O, 3�D ≠ �4O_ , 3�. 

It is known that based on Definition 9, for any parameter set 3, there is always a complement of 3 

denoted by ¬3. Next, if a soft �4O, 3� exists, then ¬4O: ¬3 → 5���, defined by ¬4O�¬�� = 4O�1 − �� for 

all � ∈ 3, can be formed. It can be shown that �¬4O, ¬3� is a soft set formed from a fuzzy subset � over 

universe �, stated in the following proposition.  

Proposition 5. If �4O , 3� is a soft set formed from a fuzzy subset � over a universe �, then �¬4O, ¬3� is a 

soft set formed from a fuzzy subset � over a universe �. 

Proof. Let �:, �; be any element of 3 where �: = �;. Consequently, 1 − �: = 1 − �; so based on Theorem 

1 and the definition of ¬4O, It is obtained that ��:a-P� = ��:a-Q� ⟺ ¬4O�¬�:� = ¬4O�¬�;�.  Therefore, 
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¬4O: ¬3 → 5��� is well-defined. Thus, ¬4O: ¬3 → 5��� is a function. In other words, based on Proposition 

1, it is proved that  �¬4O, ¬3� is a soft set formed from a fuzzy subset � over universe �. ■  

Hereafter, �¬4O , ¬3� is called the negation of a soft set �4O , 3�. 
Proposition 6. Let �4O, 3� be a soft set formed from a fuzzy subset � over a universe �. If ���� ≠ 1 − � for 

all � ∈ � then ¬4OD�¬�� = 4O_��� for all � ∈ 3. 

Proof. Let � be any element of 3. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  

¬4OD�¬�� = � − b¬4O�¬��c    = � − 4O�1 − �� = � − ��:a-� = � − �� ∈ �|���� ≥ 1 − �� = �� ∈ �|���� < 1 − ��. 
On the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 4O_���  = ��D�- = �� ∈ �|�D��� ≥ �� = �� ∈ �|1 − ���� ≥ �� = �� ∈ �|���� ≤ 1 − ��. 
Because ���� ≠ 1 − � for all � ∈ �, it is obtained that 4O_��� = �� ∈ �|���� < 1 − ��. 
Thus, it is proven that if ���� ≠ 1 − � for all � ∈ � then ¬4OD�¬�� = 4O_��� for all � ∈ 3. ∎ 

Example 4. Let � = ���:, 0.5�, ��;, 0.7�, ��<, 0.2�, ��U, 1�, ��V, 0.9�, ��f, 0��. 

Therefore, �¬4OD , ¬3� = X�¬0, ��:, �;, �<, �V, �f��, �¬0.2, ��:, �;, �<, �f��, �¬0.5, ��<, �f��,�¬0.7, ��<, �f��, �¬0.9, ��f��, �¬1, ∅� Y. 

On the other hand, because ���� ≠ 1 − � for all � ∈ �, then it is obtained that 

�4O_ , 3� = X�0, ��:, �;, �<, �V, �f��, �0.2, ��:, �;, �<, �f��, �0.5, ��<, �f��,�0.7, ��<, �f��, �0.9, ��f��, �1, ∅� Y. 
Consequently, ¬4OD�¬�� = 4O_��� for all � ∈ 3. 

 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 
proposition. 

Proposition 7. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z , 8� if Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��.  

Proof. Based on Definition 7, To prove that �Eg∩Z , F� ⊆[ �4O , 3� ∩[ �7Z , 8�, it must be proven that                      F ⊆ 3 ∩ 8 and Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

(i) Let G be any element of Im�� ∩ �� so there exists � ∈ � such that G = �� ∩ �����, then based on 

Definition 4, it is obtained that G = min�����, �����. 

1) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���. Next, as     Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 
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2) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���.  Next, as Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

From 1) and 2), it is obtained that Im�� ∩ �� ⊆ Im��� ∩ Im���, so based on Proposition 1, it is proven 

that F ⊆ 3 ∩ 8. 

(ii) Let h be any element of F. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  EO∩Z�h� = �� ∩ ��i  = �i ∩ �i  = 4O�h� ∩ 7Z�h�  = �4O ∩ 7Z��h�  

It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

From (i) and (ii), it is obtained that �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z, 8�.∎ 

Example 5. Let � = ���:, 0.8�, ��;, 0.1�, ��<, 0.7�, ��U, 0.4�, ��V, 0.7�� 

and � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 
Therefore, Im(�� ⊆ Im(�� and 3 ∩ 8 = �0.1, 0.4, 0.7, 0.8�. On the other hand, based on Definition 4, it is 

obtained that F = �0.7, 0.1, 0.4�. Thus, F ⊆ 3 ∩ 8. 

Furthermore, it is obtained that �Eg∩Z , F� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y 

and b�4O ∩ 7Z�, Fc = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y. 
It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Consequently, Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

Thus, �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z , 8�. 

Proposition 8. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8� if �i ⊆ �i when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

Proof. Based on Definition 7, to prove that �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8�, it must be proven that I ⊆ 3 ∪ 8 

and Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all h ∈ I.  

(i) Let G be any element of Im�� ∪ �� so there exists � ∈ � such that G = �� ∪ �����, then based on 

Definition 4, it is obtained that G = max�����, �����. 

1) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

2) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

From 1) and 2), it is obtained that G ∈ Im��� or G ∈ Im��� in other words G ∈ Im��� ∪ Im���. 

Consequently, Im�� ∪ �� ⊆ Im��� ∪ Im���, so based on Proposition 1, it is proven that I ⊆ 3 ∪ 8. 

(ii) Based on Definition 12, for all h ∈ I holds 

�4O ∪ 7Z��h� = J                     4O�h�,                  h ∈ 3 − 8                          7Z�h�,                  h ∈ 8 − 3      4O�h� ∪ 7Z�h�,                  h ∈ 3 ∩ 8.  

1) If h ∈ 3 − 8 

Let h be any element of 3 − 8 and if h ∈ 3 − 8 then �i ⊆ �i. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  HO∪Z�h� = �� ∪ ��i = �i ∪ �i = �i = 4O�h� 
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              It is obtained that HO∪Z�h� = 4O�h� when h ∈ 3 − 8. 

2) If h ∈ 8 − 3 

Let h be any element of 8 − 3 and if h ∈ 8 − 3 then �i ⊆  �i . Then, based on Theorem 2 and 

Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i = �i ∪ �i = �i = 7Z�h� 

              It is obtained that HO∪Z�h� = 7Z�h� when h ∈ 8 − 3. 

3) If h ∈ 3 ∩ 8 

 Let h be any element of 3 ∩ 8. Based on Theorem 2 and Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i = �i ∪ �i = 4O�h� ∪ 7Z�h� 

 It is obtained that HO∪Z�h� = 4O�h� ∪ 7Z�h� when h ∈ 3 ∩ 8. 

From 1), 2), and 3), it is obtained that Hg∪Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that                          Hg∪Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ I. 

From (i) and (ii), it is obtained that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�. ∎ 

Example 6. Let � = ���:, 0�, ��;, 0.2�, ��<, 0.4�, ��U, 0.9�� and � = ���:, 0�, ��;, 0.2�, ��<, 0.6�, ��U, 0.8��. 
Therefore, 3 ∪ 8 = �0, 0.2, 0.4, 0.6, 0.8, 0.9�. On the other hand, based on Definition 4, it is obtained that I = �0, 0.2, 0.6, 0.9�. Thus, I ⊆ 3 ∪ 8. 

Next, it is obtained that �Hg∪Z , I� = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y 

and b�4O ∪ 7Z�, Ic = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y. 

It is obtained that �i ⊆ �i when h ∈ 3 − 8 and �i ⊆ �i when h ∈ 8 − 3. Furthermore, it is obtained that Hg∪Z�h� = �4O ∪ 7Z��h�. Consequently, Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all         h ∈ I. Thus, it is obtained 

that �Hg∪Z , I� ⊆[ �4O, 3� ∪[ �7Z , 8�. 
Proposition 9. If �4O, 3� and �7Z , 8� are two soft set respectively formed from fuzzy subsets � and � over the 

universal set � then �E, F� is a soft set formed from the OR operation of �4O, 3� and �7Z, 8�  defined as  E: F → 5��� 

where F = 3 × 8 and E��, /� = 4O��� ∪ 7Z�/� for all ��, /� ∈ 3 × 8. Furthermore, if �H�O∪Z�, I� is a soft 

set formed from the union operation on fuzzy subsets � dan � then H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c with the 

sufficient condition h ≥ max��, /� for all � ∈ 3, / ∈ 8, and h ∈ I. 

Proof. Let � be any element of �� ∪ ��i, it means � ∈ �� ∈ �|�� ∪ �� ≥ h�, then based on the definition of �� ∪ ����� it is obtained that � ∈ �� ∈ �| max�����, ����� ≥ h�. 

a) Assuming that ���� ≥ ����, it is obtained that � ∈ �� ∈ �|���� ≥ h�, so that ���� ≥ h. In other words, � ∈ �i.  

b) Assuming that ���� ≥ ����, it is obtained that � ∈ �� ∈ �|���� ≥ h�, so that ���� ≥ h. In other words, � ∈ �i.  

From a) and b), it is obtained that � ∈ �i or � ∈ �i, so that � ∈ �i ∪ �i. Furthermore, because h ≥max��, /� then h ≥ � and h ≥ /, so that � ∈ �- ∪ �1. In other words,  �� ∪ ��i ⊆ �- ∪ �1. Thus, it is 

proven that H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c.■ 
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Hence, it is obtained that the definition of OR operation of �4O , 3� and �7Z , 8� is  

�4g, 3� ∨[ �7Z , 8� = �E, 3 × 8�, 
where E��, /� = 4O��� ∪ 7Z�/� for all ��, /� ∈ 3 × 8. 

Example 7. Let � = ���:, 0.2�, ��;, 0.8�, ��<, 0.5�� and � = ���:, 0.8�, ��;, 0.3�, ��<, 0.2��. 

It is obtained that 

�4O , 3� = ��0.2, ��:, �;, �<��, �0.5, ��;, �<��, �0.8, ��;���, 
�7Z , 8� = ��0.2, ��:, �;, �<��, �0.3, ��:, �;��, �0.8, ��:���, I = Im �� ∪ �� = �0.5, 0.8�, and �H�O∪Z�, I� = ��0.5, ��:, �;, �<��, �0.8, ��:, �;���  

Thus, when h ≥ max��, /�, obtained that H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c for all � ∈ 3, / ∈ 8, and h ∈ I.  

Proposition 10. If �4O, 3� and �7Z , 8� are two soft sets respectively formed from fuzzy subsets � and � over 

the universal set � then �l, F� is a soft set formed from the AND operation of �4O , 3� and �7Z , 8�  defined 

as  l: F → 5��� 

where F = 3 × 8 and l��, /� = 4O��� ∩ 7Z�/� for all ��, /� ∈ 3 × 8. Furthermore, if �m�O∩Z�, I� is a soft 

set formed from the intersection operation on fuzzy subsets � dan � then b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h� with 

the sufficient condition h ≤ min��, /� for all � ∈ 3, / ∈ 8, and h ∈ I. 

Proof. Let � be any element of �- ∩ �1, it means � ∈ �- and � ∈ �1. Furthermore, because h ≤ min��, /�, 

it is obtained that h ≤ � and h ≤ /, so that � ∈ �i and � ∈ �i. Then based on Definition 5, ���� ≥ h and ���� ≥ h are obtained, thus � ∈ �� ∈ �| max�����, ����� ≥ h�, based on the definition of �� ∩ �����, it is 

obtained that � ∈ �� ∈ �|�� ∩ ����� ≥ h�, so that � ∈ �� ∩ ��i. In other words, �- ∩ �1 ⊆ �� ∩ ��i. Thus, 

it is proven that b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h�.■ 

Hence, it is obtained that the definition of AND operation of �4O, 3� and �7Z , 8� is  

�4g, 3� ∧[ �7Z , 8� = �l, 3 × 8�, 
where l��, /� = 4O��� ∩ 7Z�/� for all ��, /� ∈ 3 × 8. 

Example 8. Based on Example 7, It is obtained  

�4O, 3�, �7Z , 8�, I = Im �� ∩ �� = �0.2, 0.3�, and �m�O∩Z�, I� = ��0.2, ��:, �;, �<��, �0.3, ��;���  

Thus, when h ≤ min��, /�, obtained that b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h� for all � ∈ 3, / ∈ 8, and h ∈ I. 

 

4 CONCLUSIONS 

Based on the result and discussion, it is obtained that every fuzzy subset can be formed as a soft set, 

with the parameter being the subset level of that fuzzy subset. The sufficient condition for a soft set formed 

from the fuzzy subset � is a subset of the soft set formed from the fuzzy subset � over the same universal set 

if � is a fuzzy subset of �. Furthermore, the complement of a soft set formed from a fuzzy subset is also a 

soft set formed from a fuzzy subset. If �m�O∩Z�, Hn�� ∩ ��� and �H�O∪Z�, Hn�� ∪ ��� are soft sets formed from 

the intersection and union operations on fuzzy subsets � and �, respectively, then b4O��� ∩ 7Z�/�c ⊆m�O∩Z��h� with the sufficient condition h ≤ min��, /� for all � ∈ Hn���, / ∈ Hn���, and h ∈ Hn�� ∩ ��. If h ≥ max��, /� for all � ∈ Hn���, / ∈ Hn���, and h ∈ Hn�� ∪ �� then  H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c. 
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ABSTRACT 

Article History: 
Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set 

formed from a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set 

formed from a fuzzy subset, the parameter used is the image of a fuzzy subset which is then 

mapped to the collection of all subsets of a universal set. This research explains the construction 

of soft sets formed from fuzzy subsets. We provide the sufficient condition that a soft set formed 

from a fuzzy subset is a subset of another soft set. Also, give some properties of the soft sets 

formed from a fuzzy subset related to complement and operations concepts in soft sets 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and 

which are not members. Members of a set are objects that have certain similarities [1]. The level of similarity 

of objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping 

objects using varying degrees of similarity. The grouping process, which tends to show varying levels of 

similarity, makes it difficult to group using concepts from classical set theory. Therefore, a more relevant 

theory is needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 
character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterization subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 
later clarified by Aktaş & Çaǧman [6]. A soft set formed from a fuzzy subset is a special form of a soft set in 

its parameter set. In a soft set formed from a fuzzy subset, the parameter used is the image of a fuzzy subset 
which is then mapped to a collection of all subsets of a universal set.  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 
decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy and soft sets and generalized soft sets. Irfan Ali and Shabir [8] developed the theory. To address 

decision-making problems based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets of 

fuzzy soft sets. They initiated an adjustable decision-making scheme using fuzzy soft sets [9], followed by a 

generalized soft fuzzy set [10] and its application to the student ranking system [11].   

Research on soft sets has also been developed by integrating other fields, including algebra, and its 

applications in the real world. In the field of algebra, they include soft matrices introduced by Çaǧman and 

Enginoǧlu [12],  soft groups introduced by Aktaş and Cağman [6], soft semiring by Feng et al. [13], soft 

rings by Acar et al. [14], and soft modules by Sun et al.[15], which until now continue to develop, can see in 

[16], [17], [18], [19], [20], [21], [22], and [23]. Some applications of soft sets in the real world can see in 

[24], [25], [26], [27], [28], [29], [30], [31], [32] and much more. 

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 
formed from fuzzy subsets. 

 

2 RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and � −cut on fuzzy subsets. 

2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 

4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 
5. Writing a conclusion. 

 

2.1 Fuzzy Subsets 

Definition 1. [3] Let non-empty set �. A fuzzy subset � of � is defined as a mapping �: � →  	0,1. 
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The function � is called a fuzzy subset of � and can be expressed by � = ���, ������� ∈ ��, where ���� is 

the membership degree of � ∈ � for a fuzzy subset �. The collection of all fuzzy subsets of � denoted by ℱ���, i.e., ℱ��� = ��|�: � → 	0,1�. 

Definition 2. [3] Let �, � ∈  ℱ���. If ���� ≤ ���� for all  � ∈ �, then � is contained in � and can be written � ⊆ � �� ⊇ ��. If � ⊆ � and � ⊇ � then � is equal to � and can be written � = �.  

Definition 3. [3] Let � be a fuzzy subset of �. The complement of � is the fuzzy subset � , where � ���  =  1 − ���� 

Definition 4. [3] Let �, � ∈ ℱ���. The intersection and union of � and � is the fuzzy subsets � ∩ � and � ∪ �, 

where �� ∩ ����� = min�����, �����  =  ���� ∧ ���� �� ∪ ����� = max�����, �����  =  ���� ∨ ���� 

 

2.2 * −Cut on Fuzzy Subsets 

Definition 5. [3] Let � ∈ ℱ���. For all � ∈ 	0,1 can be defined �-level subset �� − +�,� of �, which is 

denoted �-, i.e. �- = ��|� ∈ �, ���� ≥ �� 

 

Theorem 1. [33] Let �, � ∈ ℱ���, for all �, / ∈ 	0,1 the following properties hold true  

1) � ⊆  � ⇒ �-  ⊆ �-  

2) � ≤ / ⇒ �1  ⊆  �- 

3) � = / ⇒ �1 = �-  

4) � = � ⟺ �- = �-  

Theorem 2. [34] Let �, � ∈ ℱ���, for all � ∈ 	0,1, the following properties hold true  

1) �� ∪ ��- = �- ∪ �- 

2) �� ∩ ��- = �- ∩ �-  

 

2.3 Soft Sets 

Definition 6. [2] Let � be a universal set and 3 be a set of parameters. A pair �4, 3� is called a soft set over � where 4 is a mapping given by 4: 3 → 5��� 

For 6 ∈ 3,  4�6� may be considered as the set 6-approximate elements of the soft set �4, 3�. A soft set over � can be expressed by �4, 3�  =  ��6, 4�6���6 ∈ 3�.  

Definition 7. [35] Let �4, 3� and �7, 8� be two soft sets over �.  Then �4, 3� is called a soft subset of �7, 8� 

denoted by �4, 3� ⊆9 �7, 8�, if 

1) 3 ⊆ 8 and 

2) for all 6 ∈ 3, 4�6� ⊆ 7�6�.  

Definition 8. [35] Let �4, 3� and �7, 8� be two soft sets over �. Then �4, 3� and �7, 8� are said to be equal, 

denoted by �4, 3� = �7, 8�, if �4, 3� ⊆9 �7, 8� and �7, 8� ⊆9 �4, 3�.  

Definition 9. [36] Let 3 = �6:, 6;, 6<, … , 6>� be a set of parameters. The complement of 3 denoted by       ¬3 = �¬6:, ¬6;, ¬6<, … , ¬6>� where ¬6@ is “not 6@”  and ¬�¬6@� = 6@ , for all A = 1,2, … , C.  
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Definition 10. [37] The relative complement of a soft set �4, 3� is denoted by �4, 3�D  and is defined by �4, 3�D = �4D , 3�, where 4D: 3 → 5��� is a mapping given by 4D�6� = � − 4�6�, for all 6 ∈ 3.  

Definition 11. [13] Bi-intersection of two soft sets �4, 3� and �7, 8� over � is defined to be the soft set �E, F� 

where F = 3 ∩ 8 and for all G ∈ F, E�G� = 4�G� ∩ 7�G�. The bi-intersection of �4, 3� and �7, 8� is denoted 

by �4, 3� ∩9 �7, 8� = �E, F�.  

Definition 12. [36] Let �4, 3� and �7, 8� be two soft sets over �.  The union of �4, 3� and �7, 8� is defined 

to be a soft set �H, I�, where I = 3 ∪ 8 and for all G ∈ I satisfying the following conditions 

H�G� = J                     4�G�,                  G ∈ 3 − 8                          7�G�,                  G ∈ 8 − 3      4�G� ∪ 7�G�,                   G ∈ 3 ∩ 8.  

The union of �4, 3� and �7, 8� is denoted by �4, 3� ⨆ �7, 8� = �H, I�.  

Definition 13. [36] Let �4, 3� and �7, 8� be two soft sets over �. Operation OR from �4, 3� and �7, 8�, denoted by �4, 3� ∨9 �7, 8�, is defined to be a soft set �E, 3 × 8�, where E�6, M� = 4�6� ∪ 7�M�, for 

all �6, M� ∈ 3 × 8.  

Definition 14. [36] Let �4, 3� and �7, 8� be two soft sets over �. Operation AND from �4, 3� and �7, 8�, denoted by �4, 3� ∧9 �7, 8�, is defined to be a soft set �H, 3 × 8�, where H�6, M� = 4�6� ∩ 7�M�, for 

all �6, M� ∈ 3 × 8.  

 

3 RESULT AND DISCUSSION 

This section explains that a soft set can be formed from the fuzzy subsets, with the parameter 

being the level subset obtained from the fuzzy subset. This section also provides the properties of 

soft sets formed by fuzzy sets related to subsets and operations concepts in the soft sets. 

 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

Soft sets can be formed from fuzzy subsets, i.e., a soft set with its parameters is the image of a fuzzy 

subset stated in the following proposition.  

Proposition 1. Let � be a universal set, �: � → 	0,1 be a fuzzy set where 3 = Im��� ⊆ 	0,1. A pair �4O , 3� 

is a soft set where 4O: 3 → 5��� which is defined as 4O��� = �- , for all � ∈ 3. Furthermore, soft set �4O , 3� 

is called a soft set over �, formed from a fuzzy subset �. 

Proof. Let �:, �; be any element of 3 where �: = �;, so based on Theorem 1 and the definition of 4O, it is 

obtained that �-P = �-Q ⟺ 4O��:� = 4O��;�, thus 4O: 3 → 5��� is well defined. Therefore,  4O: 3 → 5��� 

is a function. In other words, based on Definition 6, it was proved that �4O , 3� is a soft set over the universal 

set �. ■ 

Example 1. Let � = ���:, 0.4�, ��;, 0.8�, ��<, 0.1�, ��U, 0.4�, ��V, 0.7��. 
Thus, the soft set �4O , 3� was obtained as follows.  

�4O, 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��;, �V��, �0.8, ��;�� Y 

 

3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

This section presents the properties of subsets and complements that apply to soft sets formed from 

fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �4O, 3� is a subset of �7Z , 8� if 3 ⊆ 8 and � ⊆ �. 
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Proof. It is known that 3 ⊆ 8 and based on Theorem 1, if � ⊆ �, then �- ⊆ �-. In other words, based on 

Proposition 1, it is obtained that 4O��� ⊆ 7Z��� for all � ∈ 3. Therefore, based on Definition 7, it is obtained 

that �4O , 3� ⊆[ �7Z , 8�. ∎ 

Example 2. Based on Example 1, a fuzzy subset � is obtained. Next, let the fuzzy subset � be given by         � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 

Therefore, it is obtained that 3 ⊆ 8 and ���� ≤ ���� for all  � ∈ �.  Furthermore, based on Definition 2, it 

is obtained that � ⊆ �. 

Next, it is obtained that �7Z , 3� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �;, �U, �V��,�0.7, ��:, �;, �V��, �0.8, ��;, �V�� Y 

Consequently, 4O��� ⊆ 7Z��� for all � ∈ 3. Thus, it was obtained that �4O, 3� ⊆[ �7Z, 8�. 

Based on Definition 10, it is known that the complement of a soft set �4, 3� is defined as �4D , 3�. Next, 

in this research, it is defined that �4O , 3�D = �4OD , 3� where 4OD��� = � − 4O��� for all � ∈ 3. The following 

proposition states �4O, 3�D
 as a soft set over a universal set � that is formed from a fuzzy subset �. 

Proposition 3. If �4O , 3� is a soft set formed from a fuzzy subset � over a universal set �, then �4O, 3�D
 is a 

soft set formed from a fuzzy subset � over a universal set �, where �4O, 3�D = �4OD , 3�. 

Proof. Let �:, �; be any element of 3 where �: = �;, so based on Theorem 1 and the definition of 4O, It is 

obtained that �-P = �-Q ⟺ 4O��:� = 4O��;�. Consequently, based on the definition of 4OD, it is obtained that � − 4O��:� = � − 4O��;� ⟺ 4OD��:� = 4OD��;�. Therefore, 4OD: 3 → 5��� is well-defined. Thus,      4OD: 3 → 5��� is a function. In other words, based on Proposition 1, it is proved that �4O, 3�D
 is a soft set 

formed from a fuzzy subset � over universe �. ■  

Next, the soft set �4O, 3�D
is called the complement of a soft set �4O, 3�. 

It is known, based on Definition 3, that for any fuzzy subset �, there is always a complement of � that 

is denoted by �D . The complement of a soft set formed from a fuzzy subset is not equal to a soft set formed 

from the complement of a fuzzy subset, which is shown in the following example and proposition. 

Example 3. Based on Example 1, a fuzzy subset � is obtained.  

Therefore, �4OD , 3 � = X �0.1, ∅�, �0.4, ��<��,�0.7, ��:, �<, �U��, �0.8, ��:, �<, �U, �V�� Y 

and �4O_ , 3 � = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �<, �U��,�0.7, ��<��, �0.8, ��<�� Y. 
It is obtained that �4OD , 3� ≠ �4O_ , 3�. In other words, �4O, 3�D ≠ �4O_ , 3�. 

Proposition 4. If �4O, 3� is a soft set formed from a fuzzy subset � over a universal set �, then                 �4O, 3�D ≠ �4O_ , 3�. 

It is known that based on Definition 9, for any parameter set 3, there is always a complement of 3 

denoted by ¬3. Next, if a soft �4O, 3� exists, then ¬4O: ¬3 → 5���, defined by ¬4O�¬�� = 4O�1 − �� for 

all � ∈ 3, can be formed. It can be shown that �¬4O, ¬3� is a soft set formed from a fuzzy subset � over 

universe �, stated in the following proposition.  

Proposition 5. If �4O , 3� is a soft set formed from a fuzzy subset � over a universe �, then �¬4O, ¬3� is a 

soft set formed from a fuzzy subset � over a universe �. 

Proof. Let �:, �; be any element of 3 where �: = �;. Consequently, 1 − �: = 1 − �; so based on Theorem 

1 and the definition of ¬4O, It is obtained that ��:a-P� = ��:a-Q� ⟺ ¬4O�¬�:� = ¬4O�¬�;�.  Therefore, ¬4O: ¬3 → 5��� is well-defined. Thus, ¬4O: ¬3 → 5��� is a function. In other words, based on Proposition 

1, it is proved that  �¬4O, ¬3� is a soft set formed from a fuzzy subset � over universe �. ■  



54  Family name of first author, et. al.    Write some words of the title’s in Arial Narrow, 8pt, italic …..…  

Hereafter, �¬4O , ¬3� is called the negation of a soft set �4O , 3�. 
Proposition 6. Let �4O, 3� be a soft set formed from a fuzzy subset � over a universe �. If ���� ≠ 1 − � for 

all � ∈ � then ¬4OD�¬�� = 4O_��� for all � ∈ 3. 

Proof. Let � be any element of 3. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  

¬4OD�¬�� = � − b¬4O�¬��c    = � − 4O�1 − �� = � − ��:a-� = � − �� ∈ �|���� ≥ 1 − �� = �� ∈ �|���� < 1 − ��. 
On the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 4O_���  = ��D�- = �� ∈ �|�D��� ≥ �� = �� ∈ �|1 − ���� ≥ �� = �� ∈ �|���� ≤ 1 − ��. 
Because ���� ≠ 1 − � for all � ∈ �, it is obtained that 4O_��� = �� ∈ �|���� < 1 − ��. 
Thus, it is proven that if ���� ≠ 1 − � for all � ∈ � then ¬4OD�¬�� = 4O_��� for all � ∈ 3. ∎ 

Example 4. Let � = ���:, 0.5�, ��;, 0.7�, ��<, 0.2�, ��U, 1�, ��V, 0.9�, ��f, 0��. 

Therefore, �¬4OD , ¬3� = X�¬0, ��:, �;, �<, �V, �f��, �¬0.2, ��:, �;, �<, �f��, �¬0.5, ��<, �f��,�¬0.7, ��<, �f��, �¬0.9, ��f��, �¬1, ∅� Y. 

On the other hand, because ���� ≠ 1 − � for all � ∈ �, then it is obtained that 

�4O_ , 3� = X�0, ��:, �;, �<, �V, �f��, �0.2, ��:, �;, �<, �f��, �0.5, ��<, �f��,�0.7, ��<, �f��, �0.9, ��f��, �1, ∅� Y. 
Consequently, ¬4OD�¬�� = 4O_��� for all � ∈ 3. 

 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Eg∩Z, F� ⊆[ �4O , 3� ∩[ �7Z , 8� if Im��� ⊆ Im��� or Im��� ⊆ Im��� where F = Im�� ∩ ��.  

Proof. Based on Definition 7, To prove that �Eg∩Z , F� ⊆[ �4O , 3� ∩[ �7Z , 8�, it must be proven that                      F ⊆ 3 ∩ 8 and Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

(i) Let G be any element of Im�� ∩ �� so there exists � ∈ � such that G = �� ∩ �����, then based on 

Definition 4, it is obtained that G = min�����, �����. 

1) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���. Next, as     Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 

2) Assuming that ���� ≤ ����, it is obtained that G = ���� which means G ∈ Im���.  Next, as Im��� ⊆ Im��� then G ∈ Im���. Hence, it is obtained that G ∈ Im��� and G ∈ Im��� in other words G ∈ Im��� ∩ Im���. Consequently, Im�� ∩ �� ⊆ Im��� ∩ Im���. 
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From 1) and 2), it is obtained that Im�� ∩ �� ⊆ Im��� ∩ Im���, so based on Proposition 1, it is proven 

that F ⊆ 3 ∩ 8. 

(ii) Let h be any element of F. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  EO∩Z�h� = �� ∩ ��i  = �i ∩ �i  = 4O�h� ∩ 7Z�h�  = �4O ∩ 7Z��h�  

It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

From (i) and (ii), it is obtained that �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z, 8�.∎ 

Example 5. Let � = ���:, 0.8�, ��;, 0.1�, ��<, 0.7�, ��U, 0.4�, ��V, 0.7�� 

and � = ���:, 0.7�, ��;, 0.9�, ��<, 0.1�, ��U, 0.4�, ��V, 0.8��. 
Therefore, Im(�� ⊆ Im(�� and 3 ∩ 8 = �0.1, 0.4, 0.7, 0.8�. On the other hand, based on Definition 4, it is 

obtained that F = �0.7, 0.1, 0.4�. Thus, F ⊆ 3 ∩ 8. 

Furthermore, it is obtained that �Eg∩Z , F� = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y 

and b�4O ∩ 7Z�, Fc = X�0.1, ��:, �;, �<, �U, �V��, �0.4, ��:, �U, �V��, �0.7, ��:, �V�� Y. 
It is obtained that Eg∩Z�h� = �4O ∩ 7Z��h�. Consequently, Eg∩Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ F. 

Thus, �Eg∩Z, F� ⊆[ �4O, 3� ∩[ �7Z , 8�. 

Proposition 8. Let �4O , 3� and �7Z, 8� be two soft sets formed from fuzzy subsets � and �, respectively, over 

a universal set �. The soft set �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8� if �i ⊆ �i when h ∈ 8 − 3 and �i ⊆ �i when h ∈ 3 − 8 where I = Im�� ∪ ��. 

Proof. Based on Definition 7, to prove that �Hg∪Z , I� ⊆[ �4O , 3� ∪[ �7Z, 8�, it must be proven that I ⊆ 3 ∪ 8 

and Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all h ∈ I.  

(i) Let G be any element of Im�� ∪ �� so there exists � ∈ � such that G = �� ∪ �����, then based on 

Definition 4, it is obtained that G = max�����, �����. 

1) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

2) Assuming that ���� ≥ ����, it is obtained that G = ���� which means G ∈ Im���.  

From 1) and 2), it is obtained that G ∈ Im��� or G ∈ Im��� in other words G ∈ Im��� ∪ Im���. 

Consequently, Im�� ∪ �� ⊆ Im��� ∪ Im���, so based on Proposition 1, it is proven that I ⊆ 3 ∪ 8. 

(ii) Based on Definition 12, for all h ∈ I holds 

�4O ∪ 7Z��h� = J                     4O�h�,                  h ∈ 3 − 8                          7Z�h�,                  h ∈ 8 − 3      4O�h� ∪ 7Z�h�,                  h ∈ 3 ∩ 8.  

1) If h ∈ 3 − 8 

Let h be any element of 3 − 8 and if h ∈ 3 − 8 then �i ⊆ �i. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  HO∪Z�h� = �� ∪ ��i = �i ∪ �i = �i = 4O�h� 

              It is obtained that HO∪Z�h� = 4O�h� when h ∈ 3 − 8. 

2) If h ∈ 8 − 3 
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Let h be any element of 8 − 3 and if h ∈ 8 − 3 then �i ⊆  �i . Then, based on Theorem 2 and 

Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i = �i ∪ �i = �i = 7Z�h� 

              It is obtained that HO∪Z�h� = 7Z�h� when h ∈ 8 − 3. 

3) If h ∈ 3 ∩ 8 

 Let h be any element of 3 ∩ 8. Based on Theorem 2 and Proposition 1, it is obtained that HO∪Z�h� = �� ∪ ��i = �i ∪ �i = 4O�h� ∪ 7Z�h� 

 It is obtained that HO∪Z�h� = 4O�h� ∪ 7Z�h� when h ∈ 3 ∩ 8. 

From 1), 2), and 3), it is obtained that Hg∪Z�h� = �4O ∩ 7Z��h�. Thus, it is proven that                          Hg∪Z�h� ⊆ �4O ∩ 7Z��h� for all h ∈ I. 

From (i) and (ii), it is obtained that �Hg∪Z, I� ⊆[ �4O , 3� ∪[ �7Z, 8�. ∎ 

Example 6. Let � = ���:, 0�, ��;, 0.2�, ��<, 0.4�, ��U, 0.9�� and � = ���:, 0�, ��;, 0.2�, ��<, 0.6�, ��U, 0.8��. 
Therefore, 3 ∪ 8 = �0, 0.2, 0.4, 0.6, 0.8, 0.9�. On the other hand, based on Definition 4, it is obtained that I = �0, 0.2, 0.6, 0.9�. Thus, I ⊆ 3 ∪ 8. 

Next, it is obtained that �Hg∪Z , I� = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y 

and b�4O ∪ 7Z�, Ic = X�0, ��:, �;, �<, �U��, �0.2, ��;, �<, �U��,�0.6, ��<, �U��, �0.9, ��U�� Y. 

It is obtained that �i ⊆ �i when h ∈ 3 − 8 and �i ⊆ �i when h ∈ 8 − 3. Furthermore, it is obtained that Hg∪Z�h� = �4O ∪ 7Z��h�. Consequently, Hg∪Z�h� ⊆ �4O ∪ 7Z��h� for all         h ∈ I. Thus, it is obtained 

that �Hg∪Z , I� ⊆[ �4O, 3� ∪[ �7Z , 8�. 
Proposition 9. If �4O, 3� and �7Z , 8� are two soft set respectively formed from fuzzy subsets � and � over the 

universal set � then �E, F� is a soft set formed from the OR operation of �4O, 3� and �7Z, 8�  defined as  

E: F → 5��� 

where F = 3 × 8 and E��, /� = 4O��� ∪ 7Z�/� for all ��, /� ∈ 3 × 8. Furthermore, if �H�O∪Z�, I� is a soft 

set formed from the union operation on fuzzy subsets � dan � then H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c with the 

sufficient condition h ≥ max��, /� for all � ∈ 3, / ∈ 8, and h ∈ I. 

Proof. Let � be any element of �� ∪ ��i, it means � ∈ �� ∈ �|�� ∪ �� ≥ h�, then based on the definition of �� ∪ ����� it is obtained that � ∈ �� ∈ �| max�����, ����� ≥ h�. 

a) Assuming that ���� ≥ ����, it is obtained that � ∈ �� ∈ �|���� ≥ h�, so that ���� ≥ h. In other words, � ∈ �i.  

b) Assuming that ���� ≥ ����, it is obtained that � ∈ �� ∈ �|���� ≥ h�, so that ���� ≥ h. In other words, � ∈ �i.  

From a) and b), it is obtained that � ∈ �i or � ∈ �i, so that � ∈ �i ∪ �i. Furthermore, because h ≥max��, /� then h ≥ � and h ≥ /, so that � ∈ �- ∪ �1. In other words,  �� ∪ ��i ⊆ �- ∪ �1. Thus, it is 

proven that H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c.■ 

Hence, it is obtained that the definition of OR operation of �4O , 3� and �7Z , 8� is  

�4g, 3� ∨[ �7Z , 8� = �E, 3 × 8�, 
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where E��, /� = 4O��� ∪ 7Z�/� for all ��, /� ∈ 3 × 8. 

Example 7. Let � = ���:, 0.2�, ��;, 0.8�, ��<, 0.5�� and � = ���:, 0.8�, ��;, 0.3�, ��<, 0.2��. 

It is obtained that 

�4O , 3� = ��0.2, ��:, �;, �<��, �0.5, ��;, �<��, �0.8, ��;���, 
�7Z , 8� = ��0.2, ��:, �;, �<��, �0.3, ��:, �;��, �0.8, ��:���, I = Im �� ∪ �� = �0.5, 0.8�, and �H�O∪Z�, I� = ��0.5, ��:, �;, �<��, �0.8, ��:, �;���  

Thus, when h ≥ max��, /�, obtained that H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c for all � ∈ 3, / ∈ 8, and h ∈ I.  

Proposition 10. If �4O, 3� and �7Z , 8� are two soft sets respectively formed from fuzzy subsets � and � over 

the universal set � then �l, F� is a soft set formed from the AND operation of �4O , 3� and �7Z , 8�  defined 

as  l: F → 5��� 

where F = 3 × 8 and l��, /� = 4O��� ∩ 7Z�/� for all ��, /� ∈ 3 × 8. Furthermore, if �m�O∩Z�, I� is a soft 

set formed from the intersection operation on fuzzy subsets � dan � then b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h� with 

the sufficient condition h ≤ min��, /� for all � ∈ 3, / ∈ 8, and h ∈ I. 

Proof. Let � be any element of �- ∩ �1, it means � ∈ �- and � ∈ �1. Furthermore, because h ≤ min��, /�, 

it is obtained that h ≤ � and h ≤ /, so that � ∈ �i and � ∈ �i. Then based on Definition 5, ���� ≥ h and ���� ≥ h are obtained, thus � ∈ �� ∈ �| max�����, ����� ≥ h�, based on the definition of �� ∩ �����, it is 

obtained that � ∈ �� ∈ �|�� ∩ ����� ≥ h�, so that � ∈ �� ∩ ��i. In other words, �- ∩ �1 ⊆ �� ∩ ��i. Thus, 

it is proven that b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h�.■ 

Hence, it is obtained that the definition of AND operation of �4O, 3� and �7Z , 8� is  

�4g, 3� ∧[ �7Z , 8� = �l, 3 × 8�, 
where l��, /� = 4O��� ∩ 7Z�/� for all ��, /� ∈ 3 × 8. 

Example 8. Based on Example 7, It is obtained  

�4O, 3�, �7Z , 8�, I = Im �� ∩ �� = �0.2, 0.3�, and �m�O∩Z�, I� = ��0.2, ��:, �;, �<��, �0.3, ��;���  

Thus, when h ≤ min��, /�, obtained that b4O��� ∩ 7Z�/�c ⊆ m�O∩Z��h� for all � ∈ 3, / ∈ 8, and h ∈ I. 

 

4 CONCLUSIONS 

Based on the result and discussion, it is obtained that every fuzzy subset can be formed as a soft set, 

with the parameter being the subset level of that fuzzy subset. The sufficient condition for a soft set formed 

from the fuzzy subset � is a subset of the soft set formed from the fuzzy subset � over the same universal set 

if � is a fuzzy subset of �. Furthermore, the complement of a soft set formed from a fuzzy subset is also a 

soft set formed from a fuzzy subset. If �m�O∩Z�, Hn�� ∩ ��� and �H�O∪Z�, Hn�� ∪ ��� are soft sets formed from 

the intersection and union operations on fuzzy subsets � and �, respectively, then b4O��� ∩ 7Z�/�c ⊆m�O∩Z��h� with the sufficient condition h ≤ min��, /� for all � ∈ Hn���, / ∈ Hn���, and h ∈ Hn�� ∩ ��. If h ≥ max��, /� for all � ∈ Hn���, / ∈ Hn���, and h ∈ Hn�� ∪ �� then  H�O∪Z��h� ⊆ b4O��� ∪ 7Z�/�c. 
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ABSTRACT 

Article History: 
Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set 

formed from a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set 

formed from a fuzzy subset, the parameter used is the image of a fuzzy subset which is then 

mapped to the collection of all subsets of a universal set. This research explains the construction 

of soft sets formed from fuzzy subsets. We provide the sufficient condition that a soft set formed 

from a fuzzy subset is a subset of another soft set. Also, give some properties of the soft sets 

formed from a fuzzy subset related to complement and operations concepts in soft sets 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and 

which are not members. Members of a set are objects that have certain similarities [1]. The level of similarity 

of objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping 

objects using varying degrees of similarity. The grouping process, which tends to show varying levels of 

similarity, makes it difficult to group using concepts from classical set theory. Therefore, a more relevant 

theory is needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 
character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterization subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. Let �: � → [0,1] be a fuzzy set over a set � and �
 be an �-level 

subset. We can defined a soft set �� , �� with �: � → �(�), � ↦ �
 and � = ��(�). set.  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 
decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy and soft sets and generalized soft sets. Irfan Ali and Shabir [8] developed the theory. To address 

decision-making problems based on fuzzy soft sets, Feng et al. introduced the concept of level soft sets of 

fuzzy soft sets. They initiated an adjustable decision-making scheme using fuzzy soft sets [9], followed by a 

generalized soft fuzzy set [10] and its application to the student ranking system [11].   

Research on soft sets has also been developed by integrating other fields, including algebra, and its 

applications in the real world. In the field of algebra, they include soft matrices introduced by Çaǧman and 

Enginoǧlu [12],  soft groups introduced by Aktaş and Cağman [6], soft semiring by Feng et al. [13], soft 

rings by Acar et al. [14], and soft modules by Sun et al.[15], which until now continue to develop, can see in 

[16], [17], [18], [19], [20], [21], [22], and [23]. Some applications of soft sets in the real world can see in 

[24], [25], [26], [27], [28], [29], [30], [31], [32] and much more. 

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 
formed from fuzzy subsets. 

 

2 RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and � −cut on fuzzy subsets. 

2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 

4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 

5. Writing a conclusion. 

 

2.1 Fuzzy Subsets 

A function from an empty set � to interval [0,1] is called a subset fuzzy of � that defined as follows. 

Definition 1. [3] Let � be a non-empty set. A fuzzy subset � of � is defined as a mapping �: � →  [0,1]. 
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The function � is called a fuzzy subset of � and can be expressed by � = ���, �(�)��� ∈ ��, where �(�) is 

the membership degree of � ∈ � for a fuzzy subset �. The collection of all fuzzy subsets of � denoted by ℱ(�), i.e., ℱ(�) = !�|�: � → [0,1]#. 

 Analog with the concept of set, in the concept of fuzzy subset there are the concepts of fuzzy 
subsubset and fuzzy complement, and the concept of intersection and union operations that given as follows. 

Definition 2. [3] Let �, $ ∈  ℱ(�). If �(�) ≤ $(�) for all  � ∈ �, then � is contained in $ and can be written � ⊆ $ ($ ⊇ �). If � ⊆ $ and � ⊇ $ then � is equal to $ and can be written � = $.  

Definition 3. [3] Let � be a fuzzy subset of �. The complement of � is the fuzzy subset �(, where �((�)  =  1 − �(�) 

Definition 4. [3] Let �, $ ∈ ℱ(�). The intersection and union of � and $ is the fuzzy subsets � ∩ $ and � ∪ $, 
where (� ∩ $)(�) = min!�(�), $(�)#  =  �(�) ∧ $(�) (� ∪ $)(�) = max!�(�), $(�)#  =  �(�) ∨ $(�) 
 

2.2 2 −Cut on Fuzzy Subsets 

Let 3 be any fuzzy subset of 4. The subset of 4, that the mambership degree is more or equal to any 2 ∈ [5. 6] is called 2-level subset, defined as following. 

Definition 5. [3] Let � ∈ ℱ(�). For all � ∈ [0,1] can be defined �-level subset (� − 7�8) of �, which is 

denoted �
, i.e. �
 = !�|� ∈ �, �(�) ≥ �#. 
 There is some properties about �-level subset connecting with properties of subset fuzzy, given as 

following theorem. 

Theorem 1. [33]  Let �, $ ∈ ℱ(�), for all �, : ∈ [0,1] the following properties hold true  

1) � ⊆  $ ⇒ �
  ⊆ $
  

2) � ≤ : ⇒ �<  ⊆  �
 

3) � = : ⇒ �< = �
  

4) � = $ ⟺ �
 = $
  

Theorem 2. [34] Let �, $ ∈ ℱ(�), for all � ∈ [0,1], the following properties hold true  

1) (� ∪ $)
 = �
 ∪ $
 
2) (� ∩ $)
 = �
 ∩ $
  
 
2.3 Soft Sets 

In 1999, Molodsov introduced the concept of a soft set which is a pair consisting of a function from a 

set of parameters > to the power set of a universal set 4 and >. The formal definition of a soft set is provided 
below  

Definition 6. [2] Let � be a universal set and � be a set of parameters. A pair (, �) is called a soft set over � where  is a mapping given by : � → �(�) 

For ? ∈ �,  (?) may be considered as the set ?-approximate elements of the soft set (, �). A soft set over � can be expressed by (, �)  =  ��?, (?)��? ∈ ��.  

 The connection between two soft sets is given by this following definition. 

Definition 7. [35] Let (, �) and (@, A) be two soft sets over �.  Then (, �) is called a soft subset of (@, A) 

denoted by (, �) ⊆B (@, A), if 

1) � ⊆ A and 

2) for all ? ∈ �, (?) ⊆ @(?).  

Definition 8. [35] Let (, �) and (@, A) be two soft sets over �. Then (, �) and (@, A) are said to be equal, 

denoted by (, �) = (@, A), if (, �) ⊆B (@, A) and (@, A) ⊆B (, �).  
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 The concept of soft sets includes definitions for complement and relative complement and operations 

such as intersection, union, OR and AND  between two soft sets. These definitions are presented in a specific 

order. 

Definition 9. [36] Let � = !?C, ?D, ?E, … , ?G# be a set of parameters. The complement of � denoted by       ¬� = !¬?C, ¬?D, ¬?E, … , ¬?G# where ¬?I is “not ?I”  and ¬(¬?I) = ?I , for all J = 1,2, … , L.  

Definition 10. [37] The relative complement of a soft set (, �) is denoted by (, �)M  and is defined by (, �)M = (M , �), where M: � → �(�) is a mapping given by M(?) = � − (?), for all ? ∈ �.  

Definition 11. [13] Bi-intersection of two soft sets (, �) and (@, A) over � is defined to be the soft set (N, O) 

where O = � ∩ A and for all P ∈ O, N(P) = (P) ∩ @(P). The bi-intersection of (, �) and (@, A) is denoted 

by (, �) ∩B (@, A) = (N, O).  

Definition 12. [36] Let (, �) and (@, A) be two soft sets over �.  The union of (, �) and (@, A) is defined 

to be a soft set (�, Q), where Q = � ∪ A and for all P ∈ Q satisfying the following conditions 

�(P) = R                     (P),                  P ∈ � − A                          @(P),                  P ∈ A − �      (P) ∪ @(P),                   P ∈ � ∩ A.  

The union of (, �) and (@, A) is denoted by (, �) ⨆ (@, A) = (�, Q).  

Definition 13. [36] Let (, �) and (@, A) be two soft sets over �. Operation OR from (, �) and (@, A), denoted by (, �) ∨B (@, A), is defined to be a soft set (N, � × A), where N(?, U) = (?) ∪ @(U), for 

all (?, U) ∈ � × A.  

Definition 14. [36] Let (, �) and (@, A) be two soft sets over �. Operation AND from (, �) and (@, A), denoted by (, �) ∧B (@, A), is defined to be a soft set (�, � × A), where �(?, U) = (?) ∩ @(U), for 

all (?, U) ∈ � × A.  

 

3 RESULT AND DISCUSSION 

This section explains that a soft set can be formed from the fuzzy subsets, with the parameter 

set being the level subset obtained from the fuzzy subset. This section also provides the properties 

of soft sets formed by fuzzy sets related to subsets and operations concepts in the soft sets. 

 
3.1 The Construction of Soft Sets from Fuzzy Subsets 

According to the following proposition, a soft set can be created from a fuzzy subset, where a parameter 

of the soft set represents the image of the fuzzy subset.  

Proposition 1. Let � be a universal set, �: � → [0,1] be a fuzzy set where � = Im(�) ⊆ [0,1]. A pair ��, �� 

is a soft set where �: � → �(�) which is defined as �(�) = �
 , for all � ∈ �. Furthermore, soft set ��, �� 

is called a soft set over �, formed from a fuzzy subset �. 

Proof. Let �C, �D be any element of � where �C = �D, so based on Theorem 1 and the definition of �, it is 

obtained that �
W = �
X ⟺ �(�C) = �(�D), thus �: � → �(�) is well defined. Therefore,  �: � → �(�) 

is a function. In other words, based on Definition 6, it was proved that ��, �� is a soft set over the universal 

set �. ■ 

Example 1. Let � = !(�C, 0.4), (�D, 0.8), (�E, 0.1), (�\, 0.4), (�], 0.7)#. 
Thus, the soft set �� , �� was obtained as follows.  

��, �� = _(0.1, !�C, �D, �E, �\, �]#), (0.4, !�C, �D, �\, �]#),(0.7, !�D, �]#), (0.8, !�D#) ` 

3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

In this section, we will talk about the properties of subsets and complements that are applicable to soft 

sets made from fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let ��, �� and (@a , A) be two soft sets formed from fuzzy subsets � and $, respectively, over 

a universal set �. The soft set ��, �� is a subset of (@a , A) if � ⊆ A and � ⊆ $. 
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Proof. It is known that � ⊆ A and based on Theorem 1, if � ⊆ $, then �
 ⊆ $
. In other words, based on 

Proposition 1, it is obtained that �(�) ⊆ @a(�) for all � ∈ �. Therefore, based on Definition 7, it is obtained 

that �� , �� ⊆b (@a , A). ∎ 

Example 2. Based on Example 1, a fuzzy subset � is obtained. Next, let the fuzzy subset $ be given by         $ = !(�C, 0.7), (�D, 0.9), (�E, 0.1), (�\, 0.4), (�], 0.8)#. 

Therefore, it is obtained that � ⊆ A and �(�) ≤ $(�) for all  � ∈ �.  Furthermore, based on Definition 2, it 

is obtained that � ⊆ $. 

Next, it is obtained that (@a , �) = _(0.1, !�C, �D, �E, �\, �]#), (0.4, !�C, �D, �\, �]#),(0.7, !�C, �D, �]#), (0.8, !�D, �]#) ` 

Consequently, �(�) ⊆ @a(�) for all � ∈ �. Thus, it was obtained that ��, �� ⊆b (@a, A). 

Based on Definition 10, it is known that the complement of a soft set (, �) is defined as (M , �). 
Next, in this research, it is defined that ��, ��M = ��M , �� where �M(�) = � − �(�) for all � ∈ �. The 

following proposition states �� , ��M
 as a soft set over a universal set � that is formed from a fuzzy subset �. 

Proposition 3. If �� , �� is a soft set formed from a fuzzy subset � over a universal set �, then �� , ��M
 is a 

soft set formed from a fuzzy subset � over a universal set �, where ��, ��M = ��M , ��. 

Proof. Let �C, �D be any element of � where �C = �D, so based on Theorem 1 and the definition of �, It is 

obtained that �
W = �
X ⟺ �(�C) = �(�D). Consequently, based on the definition of �M, it is obtained that � − �(�C) = � − �(�D) ⟺ �M(�C) = �M(�D). Therefore, �M: � → �(�) is well-defined. Thus,      �M: � → �(�) is a function. In other words, based on Proposition 1, it is proved that �� , ��M
 is a soft set 

formed from a fuzzy subset � over universe �. ■  

Next, the soft set ��, ��M
is called the complement of a soft set ��, ��. Based on Definition 3, It is 

knownthat for any fuzzy subset �, there is always a complement of � that is denoted by �M . The complement 

of a soft set formed from a fuzzy subset is not equal to a soft set formed from the complement of a fuzzy 
subset. The example and proposition below illustrate this concept.. 

Example 3. Based on Example 1, a fuzzy subset � is obtained.  

Therefore, ��M , � � = _ (0.1, ∅), (0.4, !�E#),(0.7, !�C, �E, �\#), (0.8, !�C, �E, �\, �]#) ` 

and ��f , � � = _(0.1, !�C, �D, �E, �\, �]#), (0.4, !�C, �E, �\#),(0.7, !�E#), (0.8, !�E#) `. 
It is obtained that ��M , �� ≠ ��f , ��. In other words, ��, ��M ≠ ��f , ��. 

Proposition 4. If ��, �� is a soft set formed from a fuzzy subset � over a universal set �, then                 ��, ��M ≠ ��f , ��. 

It is known that based on Definition 9, for any parameter set �, there is always a complement of � 

denoted by ¬�. Next, if a soft ��, �� exists, then ¬�: ¬� → �(�), defined by ¬�(¬�) = �(1 − �) for 

all � ∈ �, can be formed. It can be shown that �¬�, ¬�� is a soft set formed from a fuzzy subset � over 

universe �, stated in the following proposition.  

Proposition 5. If ��, �� is a soft set formed from a fuzzy subset � over a universe �, then �¬�, ¬�� is a 

soft set formed from a fuzzy subset � over a universe �. 

Proof. Let �C, �D be any element of � where �C = �D. Consequently, 1 − �C = 1 − �D so based on Theorem 

1 and the definition of ¬�, It is obtained that �(Ch
W) = �(Ch
X) ⟺ ¬�(¬�C) = ¬�(¬�D).  Therefore, ¬�: ¬� → �(�) is well-defined. Thus, ¬�: ¬� → �(�) is a function. In other words, based on Proposition 

1, it is proved that  �¬�, ¬�� is a soft set formed from a fuzzy subset � over universe �. ■  

Hereafter, �¬� , ¬�� is called the negation of a soft set �� , ��. 
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Proposition 6. Let ��, �� be a soft set formed from a fuzzy subset � over a universe �. If �(�) ≠ 1 − � for 

all � ∈ � then ¬�M(¬�) = �f(�) for all � ∈ �. 

Proof. Let � be any element of �. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  ¬�M(¬�) = � − i¬�(¬�)j    = � − �(1 − �) = � − �(Ch
) = � − !� ∈ �|�(�) ≥ 1 − �# = !� ∈ �|�(�) < 1 − �#. 
On the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that �f(�)  = (�M)
 = !� ∈ �|�M(�) ≥ �# = !� ∈ �|1 − �(�) ≥ �# = !� ∈ �|�(�) ≤ 1 − �#. 
Because �(�) ≠ 1 − � for all � ∈ �, it is obtained that �f(�) = !� ∈ �|�(�) < 1 − �#. 
Thus, it is proven that if �(�) ≠ 1 − � for all � ∈ � then ¬�M(¬�) = �f(�) for all � ∈ �. ∎ 

Example 4. Let � = !(�C, 0.5), (�D, 0.7), (�E, 0.2), (�\, 1), (�], 0.9), (�m, 0)#. 

Therefore, �¬�M , ¬�� = _(¬0, !�C, �D, �E, �], �m#), (¬0.2, !�C, �D, �E, �m#), (¬0.5, !�E, �m#),(¬0.7, !�E, �m#), (¬0.9, !�m#), (¬1, ∅) `. 

On the other hand, because �(�) ≠ 1 − � for all � ∈ �, then it is obtained that 

��f , �� = _(0, !�C, �D, �E, �], �m#), (0.2, !�C, �D, �E, �m#), (0.5, !�E, �m#),(0.7, !�E, �m#), (0.9, !�m#), (1, ∅) `. 
Consequently, ¬�M(¬�) = �f(�) for all � ∈ �. 

 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let ��, �� and (@a , A) be two soft sets formed from fuzzy subsets � and $, respectively, over 

a universal set �. The soft set �N3∩a, O� ⊆b �� , �� ∩b (@a , A) if Im(�) ⊆ Im($) or Im($) ⊆ Im(�) where O = Im(� ∩ $).  

Proof. Based on Definition 7, To prove that �N3∩a, O� ⊆b ��, �� ∩b (@a , A), it must be proven that                      O ⊆ � ∩ A and N3∩a(n) ⊆ �� ∩ @a�(n) for all n ∈ O. 

(i) Let P be any element of Im(� ∩ $) so there exists � ∈ � such that P = (� ∩ $)(�), then based on 

Definition 4, it is obtained that P = min!�(�), $(�)#. 

1) Assuming that �(�) ≤ $(�), it is obtained that P = �(�) which means P ∈ Im(�). Next, as     Im(�) ⊆ Im($) then P ∈ Im($). Hence, it is obtained that P ∈ Im(�) and P ∈ Im($) in other words P ∈ Im(�) ∩ Im($). Consequently, Im(� ∩ $) ⊆ Im(�) ∩ Im($). 

2) Assuming that $(�) ≤ �(�), it is obtained that P = $(�) which means P ∈ Im($).  Next, as Im($) ⊆ Im(�) then P ∈ Im(�). Hence, it is obtained that P ∈ Im(�) and P ∈ Im($) in other words P ∈ Im(�) ∩ Im($). Consequently, Im(� ∩ $) ⊆ Im(�) ∩ Im($). 

From 1) and 2), it is obtained that Im(� ∩ $) ⊆ Im(�) ∩ Im($), so based on Proposition 1, it is proven 

that O ⊆ � ∩ A. 

(ii) Let n be any element of O. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  N�∩a(n) = (� ∩ $)o  = �o ∩ $o  = �(n) ∩ @a(n)  = �� ∩ @a�(n)  
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It is obtained that N3∩a(n) = �� ∩ @a�(n). Thus, it is proven that N3∩a(n) ⊆ �� ∩ @a�(n) for all n ∈ O. 

From (i) and (ii), it is obtained that �N3∩a, O� ⊆b ��, �� ∩b (@a, A).∎ 

Example 5. Let � = !(�C, 0.8), (�D, 0.1), (�E, 0.7), (�\, 0.4), (�], 0.7)# 

and $ = !(�C, 0.7), (�D, 0.9), (�E, 0.1), (�\, 0.4), (�], 0.8)#. 
Therefore, Im(�) ⊆ Im($) and � ∩ A = !0.1, 0.4, 0.7, 0.8#. On the other hand, based on Definition 4, it is 

obtained that O = !0.7, 0.1, 0.4#. Thus, O ⊆ � ∩ A. 

Furthermore, it is obtained that �N3∩a , O� = _(0.1, !�C, �D, �E, �\, �]#), (0.4, !�C, �\, �]#), (0.7, !�C, �]#) ` 

and i�� ∩ @a�, Oj = _(0.1, !�C, �D, �E, �\, �]#), (0.4, !�C, �\, �]#), (0.7, !�C, �]#) `. 
It is obtained that N3∩a(n) = �� ∩ @a�(n). Consequently, N3∩a(n) ⊆ �� ∩ @a�(n) for all n ∈ O. 

Thus, �N3∩a, O� ⊆b ��, �� ∩b (@a , A). 

Proposition 8. Let ��, �� and (@a , A) be two soft sets formed from fuzzy subsets � and $, respectively, over 

a universal set �. The soft set ��3∪a , Q� ⊆b ��, �� ∪b (@a , A) if �o ⊆ $o when n ∈ A − � and $o ⊆ �o when n ∈ � − A where Q = Im(� ∪ $). 

Proof. Based on Definition 7, to prove that ��3∪a , Q� ⊆b �� , �� ∪b (@a , A), it must be proven that Q ⊆ � ∪ A 

and �3∪a(n) ⊆ �� ∪ @a�(n) for all n ∈ Q.  

(i) Let P be any element of Im(� ∪ $) so there exists � ∈ � such that P = (� ∪ $)(�), then based on 

Definition 4, it is obtained that P = max!�(�), $(�)#. 

1) Assuming that �(�) ≥ $(�), it is obtained that P = �(�) which means P ∈ Im(�).  

2) Assuming that $(�) ≥ �(�), it is obtained that P = $(�) which means P ∈ Im($).  

From 1) and 2), it is obtained that P ∈ Im(�) or P ∈ Im($) in other words P ∈ Im(�) ∪ Im($). 

Consequently, Im(� ∪ $) ⊆ Im(�) ∪ Im($), so based on Proposition 1, it is proven that Q ⊆ � ∪ A. 

(ii) Based on Definition 12, for all n ∈ Q holds 

�� ∪ @a�(n) = R                     �(n),                  n ∈ � − A                          @a(n),                  n ∈ A − �      �(n) ∪ @a(n),                  n ∈ � ∩ A.  

1) If n ∈ � − A 

Let n be any element of � − A and if n ∈ � − A then $o ⊆ �o. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  ��∪a(n) = (� ∪ $)o = �o ∪ $o = �o = �(n) 

              It is obtained that ��∪a(n) = �(n) when n ∈ � − A. 

2) If n ∈ A − � 

Let n be any element of A − � and if n ∈ A − � then �o ⊆  $o . Then, based on Theorem 2 and 

Proposition 1, it is obtained that ��∪a(n) = (� ∪ $)o = �o ∪ $o = $o = @a(n) 

              It is obtained that ��∪a(n) = @a(n) when n ∈ A − �. 

3) If n ∈ � ∩ A 

 Let n be any element of � ∩ A. Based on Theorem 2 and Proposition 1, it is obtained that ��∪a(n) = (� ∪ $)o = �o ∪ $o = �(n) ∪ @a(n) 

 It is obtained that ��∪a(n) = �(n) ∪ @a(n) when n ∈ � ∩ A. 
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From 1), 2), and 3), it is obtained that �3∪a(n) = �� ∩ @a�(n). Thus, it is proven that                          �3∪a(n) ⊆ �� ∩ @a�(n) for all n ∈ Q. 

From (i) and (ii), it is obtained that ��3∪a, Q� ⊆b �� , �� ∪b (@a, A). ∎ 

Example 6. Let � = !(�C, 0), (�D, 0.2), (�E, 0.4), (�\, 0.9)# and $ = !(�C, 0), (�D, 0.2), (�E, 0.6), (�\, 0.8)#. 
Therefore, � ∪ A = !0, 0.2, 0.4, 0.6, 0.8, 0.9#. On the other hand, based on Definition 4, it is obtained that Q = !0, 0.2, 0.6, 0.9#. Thus, Q ⊆ � ∪ A. 

Next, it is obtained that ��3∪a , Q� = _(0, !�C, �D, �E, �\#), (0.2, !�D, �E, �\#),(0.6, !�E, �\#), (0.9, !�\#) ` 

and i�� ∪ @a�, Qj = _(0, !�C, �D, �E, �\#), (0.2, !�D, �E, �\#),(0.6, !�E, �\#), (0.9, !�\#) `. 

It is obtained that $o ⊆ �o when n ∈ � − A and �o ⊆ $o when n ∈ A − �. Furthermore, it is obtained that �3∪a(n) = �� ∪ @a�(n). Consequently, �3∪a(n) ⊆ �� ∪ @a�(n) for all n ∈ Q. Thus, it is obtained that ��3∪a , Q� ⊆b �� , �� ∪b (@a , A). 
Proposition 9. If ��, �� and (@a, A) are two soft set respectively formed from fuzzy subsets � and $ over 

the universal set � then (N, O) is a soft set formed from the OR operation of �� , �� and (@a , A)  defined as  N: O → �(�) 

where O = � × A and N(�, :) = �(�) ∪ @a(:) for all (�, :) ∈ � × A. Furthermore, if (�(�∪a), Q) is a soft 

set formed from the union operation on fuzzy subsets � and $ then �(�∪a)(n) ⊆ i�(�) ∪ @a(:)j with the 

sufficient condition n ≥ max!�, :# for all � ∈ �, : ∈ A, and n ∈ Q. 

Proof. Let � be any element of (� ∪ $)o, it means � ∈ !� ∈ �|(� ∪ $) ≥ n#, then based on the definition of (� ∪ $)(�) it is obtained that � ∈ !� ∈ �| max!�(�), $(�)# ≥ n#. 

a) Assuming that �(�) ≥ $(�), it is obtained that � ∈ !� ∈ �|�(�) ≥ n#, so that �(�) ≥ n. In other words, � ∈ �o.  

b) Assuming that $(�) ≥ �(�), it is obtained that � ∈ !� ∈ �|$(�) ≥ n#, so that $(�) ≥ n. In other words, � ∈ $o.  

From a) and b), it is obtained that � ∈ �o or � ∈ $o, so that � ∈ �o ∪ $o. Furthermore, because n ≥max!�, :# then n ≥ � and n ≥ :, so that � ∈ �
 ∪ $<. In other words,  (� ∪ $)o ⊆ �
 ∪ $<. Thus, it is 

proven that �(�∪a)(n) ⊆ i�(�) ∪ @a(:)j.■ 

Hence, it is obtained that the definition of OR operation of �� , �� and (@a , A) is  �3, �� ∨b (@a , A) = (N, � × A), 
where N(�, :) = �(�) ∪ @a(:) for all (�, :) ∈ � × A. 

Example 7. Let � = !(�C, 0.2), (�D, 0.8), (�E, 0.5)# and $ = !(�C, 0.8), (�D, 0.3), (�E, 0.2)#. 

It is obtained that �� , �� = !(0.2, !�C, �D, �E#), (0.5, !�D, �E#), (0.8, !�D#)#, (@a , A) = !(0.2, !�C, �D, �E#), (0.3, !�C, �D#), (0.8, !�C#)#, Q = Im (� ∪ $) = !0.5, 0.8#, and ��(�∪a), Q� = !(0.5, !�C, �D, �E#), (0.8, !�C, �D#)#  
Thus, when n ≥ max!�, :#, obtained that �(�∪a)(n) ⊆ i�(�) ∪ @a(:)j for all � ∈ �, : ∈ A, and n ∈ Q.  

Proposition 10. If ��, �� and (@a , A) are two soft sets respectively formed from fuzzy subsets � and $ over 

the universal set � then (r, O) is a soft set formed from the AND operation of ��, �� and (@a , A)  defined as  r: O → �(�) 

where O = � × A and r(�, :) = �(�) ∩ @a(:) for all (�, :) ∈ � × A. Furthermore, if (s(�∩a), Q) is a soft 

set formed from the intersection operation on fuzzy subsets � and $ then i�(�) ∩ @a(:)j ⊆ s(�∩a)(n) with 

the sufficient condition n ≤ min!�, :# for all � ∈ �, : ∈ A, and n ∈ Q. 

Proof. Let � be any element of �
 ∩ $<, it means � ∈ �
 and � ∈ $<. Furthermore, because n ≤ min!�, :#, 

it is obtained that n ≤ � and n ≤ :, so that � ∈ �o and � ∈ $o. Then based on Definition 5, �(�) ≥ n and $(�) ≥ n are obtained, thus � ∈ !� ∈ �| max!�(�), $(�)# ≥ n#, based on the definition of (� ∩ $)(�), it is 
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obtained that � ∈ !� ∈ �|(� ∩ $)(�) ≥ n#, so that � ∈ (� ∩ $)o. In other words, �
 ∩ $< ⊆ (� ∩ $)o. Thus, 

it is proven that i�(�) ∩ @a(:)j ⊆ s(�∩a)(n).■ 

Hence, it is obtained that the definition of AND operation of �� , �� and (@a, A) is  �3, �� ∧b (@a , A) = (r, � × A), 
where r(�, :) = �(�) ∩ @a(:) for all (�, :) ∈ � × A. 

Example 8. Based on Example 7, It is obtained �� , ��, (@a , A), Q = Im (� ∩ $) = !0.2, 0.3#, and �s(�∩a), Q� = !(0.2, !�C, �D, �E#), (0.3, !�D#)#  

Thus, when n ≤ min!�, :#, obtained that i�(�) ∩ @a(:)j ⊆ s(�∩a)(n) for all � ∈ �, : ∈ A, and n ∈ Q. 

 

4 CONCLUSIONS 

Based on the result and discussion, it is obtained that every fuzzy subset can be formed as a soft set, 

with the parameter set being the image of that fuzzy subset. The sufficient condition for a soft set formed 

from the fuzzy subset � is a subset of the soft set formed from the fuzzy subset $ over the same universal set 

if � is a fuzzy subsubset of $. Furthermore, the complement of a soft set formed from a fuzzy subset is also 

a soft set formed from a fuzzy subset. If (s(�∩a), ��(� ∩ $)) and (�(�∪a), ��(� ∪ $)) are soft sets formed 

from the intersection and union operations on fuzzy subsets � and $, respectively, then i�(�) ∩ @a(:)j ⊆s(�∩a)(n) with the sufficient condition n ≤ min!�, :# for all � ∈ ��(�), : ∈ ��($), and n ∈ ��(� ∩ $). If n ≥ max!�, :# for all � ∈ ��(�), : ∈ ��($), and n ∈ ��(� ∪ $) then  �(�∪a)(n) ⊆ i�(�) ∪ @a(:)j. 
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Article History: 
Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set 

formed from a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set 

formed from a fuzzy subset, the parameter used is the image of a fuzzy subset which is then 

mapped to the collection of all subsets of a universal set. This research explains the 

construction of soft sets formed from fuzzy subsets. We provide the sufficient condition that 

a soft set formed from a fuzzy subset is a subset of another soft set. Also, give some properties 

of the soft sets formed from a fuzzy subset related to complement and operations concepts in 

soft sets 
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and which 

are not members. Members of a set are objects that have certain similarities [1]. The level of similarity of 

objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping objects 

using varying degrees of similarity. The grouping process, which tends to show varying levels of similarity, 

makes it difficult to group using concepts from classical set theory. Therefore, a more relevant theory is 

needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 

character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterization subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. Let 𝜇: 𝑈 → [0,1] be a fuzzy set over a set 𝑈 and 𝜇𝛼 be an 𝛼-level 

subset. We can defined a soft set (𝐹𝜇 , 𝐴) with 𝐹𝜇: 𝐴 → 𝑃(𝑈), 𝛼 ↦ 𝜇𝛼 and 𝐴 = 𝐼𝑚(𝜇).  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 

decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy with soft sets and generalized soft sets. Irfan Ali and Shabir [8] developed the theory. They give De 

Morgan-type laws, as given in the Maji et al. paper, which are generally untrue. They also provide some new 

definitions and operations for fuzzy soft sets, making it very easy to prove the existence of De Morgan type 

laws in fuzzy soft sets. To address decision-making problems based on fuzzy soft sets, Feng et al. introduced 

the concept of level soft sets of fuzzy soft sets. They initiated an adjustable decision-making scheme using 

fuzzy soft sets [9], followed by a generalized soft fuzzy set [10] and its application to the student ranking 

system [11].   

Research on soft sets has also been developed by integrating other fields, including algebra, and its 

applications in the real world. In the field of algebra, they include soft matrices introduced by Çaǧman and 

Enginoǧlu [12],  soft groups introduced by Aktaş and Cağman [6], soft semiring by Feng et al. [13], soft 

rings by Acar et al. [14], and soft modules by Sun et al.[15], which until now continue to develop, can see in 

[16], [17], [18], [19], [20], [21], [22], and [23]. Some applications of soft sets in the real world can see in 

[24], [25], [26], [27], [28], [29], [30], [31], [32] and much more. 

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 

formed from fuzzy subsets. 

2. RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and 𝛼 −cut on fuzzy subsets. 

2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 

4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 

5. Writing a conclusion. 
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2.1 Fuzzy Subsets 

A function from an empty set 𝑈 to interval [0,1] is called a subset fuzzy of 𝑈 that defined as follows. 

Definition 1. [3] Let 𝑈 be a non-empty set. A fuzzy subset 𝜇 of 𝑈 is defined as a mapping 

𝜇: 𝑈 →  [0,1]. 

The function 𝜇 is called a fuzzy subset of 𝑈 and can be expressed by 𝜇 = {(𝑢, 𝜇(𝑢))|𝑢 ∈ 𝑈}, where 

𝜇(𝑢) is the membership degree of 𝑢 ∈ 𝑈 for a fuzzy subset 𝜇. The collection of all fuzzy subsets of 𝑈 denoted 

by ℱ(𝑈), i.e., ℱ(𝑈) = {𝜇|𝜇: 𝑈 → [0,1]}. 

 Analog with the concept of set, in the concept of fuzzy subset there are the concepts of fuzzy 

subsubset and fuzzy complement, and the concept of intersection and union operations that given as follows. 

Definition 2. [3] Let 𝜇, 𝜈 ∈  ℱ(𝑈). If 𝜇(𝑢) ≤ 𝜈(𝑢) for all  𝑢 ∈ 𝑈, then 𝜇 is contained in 𝜈 and can be written 

𝜇 ⊆ 𝜈 (𝜈 ⊇ 𝜇). If 𝜇 ⊆ 𝜈 and 𝜇 ⊇ 𝜈 then 𝜇 is equal to 𝜈 and can be written 𝜇 = 𝜈.  

Definition 3. [3] Let 𝜇 be a fuzzy subset of 𝑈. The complement of 𝜇 is the fuzzy subset 𝜇𝑐, where 

𝜇𝑐(𝑢)  =  1 − 𝜇(𝑢) 

Definition 4. [3] Let 𝜇, 𝜈 ∈ ℱ(𝑈). The intersection and union of 𝜇 and 𝜈 is the fuzzy subsets 𝜇 ∩ 𝜈 and 𝜇 ∪ 𝜈, 

where 

(𝜇 ∩ 𝜈)(𝑢) = min{𝜇(𝑢), 𝜈(𝑢)}  =  𝜇(𝑢) ∧ 𝜈(𝑢) 
(𝜇 ∪ 𝜈)(𝑢) = max{𝜇(𝑢), 𝜈(𝑢)}  =  𝜇(𝑢) ∨ 𝜈(𝑢) 

𝟐. 𝟐 𝜶 −Cut on Fuzzy Subsets 

Let 𝝁 be any fuzzy subset of 𝑼. The subset of 𝑼, that the membership degree is more or equal to any 

𝜶 ∈ [𝟎. 𝟏] is called 𝜶-level subset, defined as following. 

Definition 5. [3] Let 𝜇 ∈ ℱ(𝑈). For all 𝛼 ∈ [0,1] can be defined α-level subset (𝛼 − 𝑐𝑢𝑡) of μ, which is 

denoted by 𝜇𝛼, i.e. 

𝜇𝛼 = {𝑢|𝑢 ∈ 𝑈, 𝜇(𝑢) ≥ 𝛼}. 

There is some properties about 𝛼-level subset connecting with properties of subset fuzzy, given as 

following theorem. 

Theorem 1. [33]  Let 𝜇, 𝜈 ∈ ℱ(𝑈), for all 𝛼, 𝛽 ∈ [0,1] the following properties hold true  

1) 𝜇 ⊆  𝜈 ⇒ 𝜇𝛼  ⊆ 𝜈𝛼  

2) 𝛼 ≤ 𝛽 ⇒ 𝜇𝛽  ⊆  𝜇𝛼 

3) 𝛼 = 𝛽 ⇒ 𝜇𝛽 = 𝜇𝛼  

4) 𝜇 = 𝜈 ⟺ 𝜇𝛼 = 𝜈𝛼.  

Theorem 2. [34] Let 𝜇, 𝜈 ∈ ℱ(𝑈), for all 𝛼 ∈ [0,1], the following properties hold true  

1) (𝜇 ∪ 𝜈)𝛼 = 𝜇𝛼 ∪ 𝜈𝛼 
2) (𝜇 ∩ 𝜈)𝛼 = 𝜇𝛼 ∩ 𝜈𝛼 .  

2.3 Soft Sets 

In 1999, Molodsov introduced the concept of a soft set which is a pair consisting of a function from a 

set of parameters 𝑨 to the power set of a universal set 𝑼 and 𝑨. The formal definition of a soft set is provided 

below  

Definition 6. [2] Let 𝑈 be a universal set and 𝐴 be a set of parameters. A pair (𝐹, 𝐴) is called a soft set over 

𝑈 where 𝐹 is a mapping given by 

𝐹: 𝐴 → 𝑃(𝑈) 

For 𝑎 ∈ 𝐴,  𝐹(𝑎) may be considered as the set 𝑎-approximate elements of the soft set (𝐹, 𝐴). A soft set over 

𝑈 can be expressed by (𝐹, 𝐴)  =  {(𝑎, 𝐹(𝑎))|𝑎 ∈ 𝐴}.  

 The connection between two soft sets is given by this following definition. 

Definition 7. [35] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.  Then (𝐹, 𝐴) is called a soft subset of (𝐺, 𝐵) 

denoted by (𝐹, 𝐴) ⊆̂ (𝐺, 𝐵), if 

1) 𝐴 ⊆ 𝐵 and 
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2) for all 𝑎 ∈ 𝐴, 𝐹(𝑎) ⊆ 𝐺(𝑎).  

Definition 8. [35] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Then (𝐹, 𝐴) and (𝐺, 𝐵) are said to be equal, 

denoted by (𝐹, 𝐴) = (𝐺, 𝐵), if (𝐹, 𝐴) ⊆̂ (𝐺, 𝐵) and (𝐺, 𝐵) ⊆̂ (𝐹, 𝐴).  

The concept of soft sets includes definitions for complement and relative complement and operations 

such as intersection, union, OR and AND  between two soft sets. These definitions are presented in a specific 

order. 

Definition 9. [36] Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} be a set of parameters. The complement of 𝐴 denoted by       

¬𝐴 = {¬𝑎1, ¬𝑎2, ¬𝑎3, … , ¬𝑎𝑛} where ¬𝑎𝑖 is “not 𝑎𝑖”  and ¬(¬𝑎𝑖) = 𝑎𝑖, for all 𝑖 = 1,2, … , 𝑛.  

Definition 10. [37] The relative complement of a soft set (𝐹, 𝐴) is denoted by (𝐹, 𝐴)𝐶  and is defined by 

(𝐹, 𝐴)𝐶 = (𝐹𝐶 , 𝐴), where 𝐹𝐶 : 𝐴 → 𝑃(𝑈) is a mapping given by 𝐹𝐶(𝑎) = 𝑈 − 𝐹(𝑎), for all 𝑎 ∈ 𝐴.  

Definition 11. [13] Bi-intersection of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈 is defined to be the soft set (𝐻, 𝐶) 

where 𝐶 = 𝐴 ∩ 𝐵 and for all 𝑥 ∈ 𝐶, 𝐻(𝑥) = 𝐹(𝑥) ∩ 𝐺(𝑥). The bi-intersection of (𝐹, 𝐴) and (𝐺, 𝐵) is denoted 

by (𝐹, 𝐴) ∩̂ (𝐺, 𝐵) = (𝐻, 𝐶).  

Definition 12. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.  The union of (𝐹, 𝐴) and (𝐺, 𝐵) is defined 

to be a soft set (𝐼, 𝐷), where 𝐷 = 𝐴 ∪ 𝐵 and for all 𝑥 ∈ 𝐷 satisfying the following conditions 

𝐼(𝑥) = {

                    𝐹(𝑥),                  𝑥 ∈ 𝐴 − 𝐵     
                     𝐺(𝑥),                  𝑥 ∈ 𝐵 − 𝐴      

𝐹(𝑥) ∪ 𝐺(𝑥),                   𝑥 ∈ 𝐴 ∩ 𝐵.
 

The union of (𝐹, 𝐴) and (𝐺, 𝐵) is denoted by (𝐹, 𝐴) ⨆ (𝐺, 𝐵) = (𝐼, 𝐷).  

Definition 13. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Operation OR from (𝐹, 𝐴) and 

(𝐺, 𝐵), denoted by (𝐹, 𝐴) ∨̂ (𝐺, 𝐵), is defined to be a soft set (𝐻, 𝐴 × 𝐵), where 𝐻(𝑎, 𝑏) = 𝐹(𝑎) ∪ 𝐺(𝑏), for 

all (𝑎, 𝑏) ∈ 𝐴 × 𝐵.  

Definition 14. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Operation AND from (𝐹, 𝐴) and 

(𝐺, 𝐵), denoted by (𝐹, 𝐴) ∧̂ (𝐺, 𝐵), is defined to be a soft set (𝐼, 𝐴 × 𝐵), where 𝐼(𝑎, 𝑏) = 𝐹(𝑎) ∩ 𝐺(𝑏), for 

all (𝑎, 𝑏) ∈ 𝐴 × 𝐵.  

3. RESULT AND DISCUSSION 

This section explains that a soft set can be formed from the fuzzy subsets, with the parameter 

set being the level subset obtained from the fuzzy subset. This section also provides the properties 

of soft sets formed by fuzzy sets related to subsets and operations concepts in the soft sets. 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

According to the following proposition, a soft set can be created from a fuzzy subset, where a parameter 

of the soft set represents the image of the fuzzy subset.  

Proposition 1. Let 𝑈 be a universal set, 𝜇: 𝑈 → [0,1] be a fuzzy set where 𝐴 = 𝐼𝑚(𝜇) ⊆ [0,1]. A pair (𝐹𝜇 , 𝐴) 

is a soft set where 𝐹𝜇: 𝐴 → 𝑃(𝑈) which is defined as 𝐹𝜇(𝛼) = 𝜇𝛼 , for all 𝛼 ∈ 𝐴. Furthermore, soft set (𝐹𝜇 , 𝐴) 

is called a soft set over 𝑈, formed from a fuzzy subset 𝜇. 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2, so based on Theorem 1 and the definition of 𝐹𝜇, it is 

obtained that 𝜇𝛼1
= 𝜇𝛼2

⟺ 𝐹𝜇(𝛼1) = 𝐹𝜇(𝛼2), thus 𝐹𝜇: 𝐴 → 𝑃(𝑈) is well defined. Therefore,  𝐹𝜇: 𝐴 → 𝑃(𝑈) 

is a function. In other words, based on Definition 6, it was proved that (𝐹𝜇 , 𝐴) is a soft set over the universal 

set 𝑈. ■ 

Example 1. Let 𝜇 = {(𝑢1, 0.4), (𝑢2, 0.8), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.7)}. Thus, the soft set (𝐹𝜇 , 𝐴) was 

obtained as follows.  

(𝐹𝜇 , 𝐴) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢2, 𝑢4, 𝑢5}),

(0.7, {𝑢2, 𝑢5}), (0.8, {𝑢2}) 
} 
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3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

In this section, we will talk about the properties of subsets and complements that are applicable to soft 

sets made from fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐹𝜇 , 𝐴) is a subset of (𝐺𝜈 , 𝐵) if 𝐴 ⊆ 𝐵 and 𝜇 ⊆ 𝜈. 

Proof. It is known that 𝐴 ⊆ 𝐵 and based on Theorem 1, if 𝜇 ⊆ 𝜈, then 𝜇𝛼 ⊆ 𝜈𝛼. In other words, based on 

Proposition 1, it is obtained that 𝐹𝜇(𝛼) ⊆ 𝐺𝜈(𝛼) for all 𝛼 ∈ 𝐴. Therefore, based on Definition 7, it is obtained 

that (𝐹𝜇 , 𝐴) ⊆̃ (𝐺𝜈 , 𝐵). ∎ 

Example 2. Based on Example 1, a fuzzy subset 𝜇 is obtained. Next, let the fuzzy subset 𝜈 be given by         𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.9), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.8)}. From Example 1 we have 𝐴 = 𝐼𝑚(𝜇) =

{0.1, 0.4, 0.7, 0.8}. Since 𝐵 = 𝐼𝑚(𝜈) = {0.1, 0.4, 0.7, 0.8, 0.9}, it is obtained that 𝐴 ⊆ 𝐵 and 𝜇(𝑢) ≤
𝜈(𝑢) for all  𝑢 ∈ 𝑈.  Furthermore, based on Definition 2, it is obtained that 𝜇 ⊆ 𝜈. 

Next, it is obtained that (𝐺𝜈 , 𝐴) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢2, 𝑢4, 𝑢5}),

(0.7, {𝑢1, 𝑢2, 𝑢5}), (0.8, {𝑢2, 𝑢5}) 
} 

Consequently, 𝐹𝜇(𝛼) ⊆ 𝐺𝜈(𝛼) for all 𝛼 ∈ 𝐴. Thus, it was obtained that (𝐹𝜇 , 𝐴) ⊆̃ (𝐺𝜈, 𝐵). 

Based on Definition 10, it is known that the complement of a soft set (𝐹, 𝐴) is defined as (𝐹𝐶 , 𝐴). 

Next, in this research, it is defined that (𝐹𝜇 , 𝐴)
𝐶

= (𝐹𝜇
𝐶 , 𝐴) where 𝐹𝜇

𝐶(𝛼) = 𝑈 − 𝐹𝜇(𝛼) for all 𝛼 ∈ 𝐴. The 

following proposition states (𝐹𝜇 , 𝐴)
𝐶

 as a soft set over a universal set 𝑈 that is formed from a fuzzy subset 𝜇. 

Proposition 3. If (𝐹𝜇 , 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, then (𝐹𝜇 , 𝐴)
𝐶

 is a 

soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, where (𝐹𝜇 , 𝐴)
𝐶

= (𝐹𝜇
𝐶 , 𝐴). 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2, so based on Theorem 1 and the definition of 𝐹𝜇, It is 

obtained that 𝜇𝛼1
= 𝜇𝛼2

⟺ 𝐹𝜇(𝛼1) = 𝐹𝜇(𝛼2). Consequently, based on the definition of 𝐹𝜇
𝐶, it is obtained that 

𝑈 − 𝐹𝜇(𝛼1) = 𝑈 − 𝐹𝜇(𝛼2) ⟺ 𝐹𝜇
𝐶(𝛼1) = 𝐹𝜇

𝐶(𝛼2). Therefore, 𝐹𝜇
𝐶: 𝐴 → 𝑃(𝑈) is well-defined. Thus,      

𝐹𝜇
𝐶 : 𝐴 → 𝑃(𝑈) is a function. In other words, based on Proposition 1, it is proved that (𝐹𝜇 , 𝐴)

𝐶
 is a soft set 

formed from a fuzzy subset 𝜇 over universe 𝑈. ■  

Next, the soft set (𝐹𝜇 , 𝐴)
𝐶

is called the complement of a soft set (𝐹𝜇 , 𝐴). Based on Definition 3, It is 

knownthat for any fuzzy subset 𝜇, there is always a complement of 𝜇 that is denoted by 𝜇𝐶 . The complement 

of a soft set formed from a fuzzy subset is not equal to a soft set formed from the complement of a fuzzy 

subset. The example and proposition below illustrate this concept.. 

Example 3. Based on Example 1, a fuzzy subset 𝜇 is obtained. Therefore, (𝐹𝜇
𝐶 , 𝐴 ) =

{
(0.1, ∅), (0.4, {𝑢3}),

(0.7, {𝑢1, 𝑢3, 𝑢4}), (0.8, {𝑢1, 𝑢3, 𝑢4, 𝑢5}) 
} and (𝐹𝜇𝐶 , 𝐴 ) = {

(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢3, 𝑢4}),
(0.7, {𝑢3}), (0.8, {𝑢3}) 

}. It 

is obtained that (𝐹𝜇
𝐶 , 𝐴) ≠ (𝐹𝜇𝐶 , 𝐴). In other words, (𝐹𝜇 , 𝐴)

𝐶
≠ (𝐹𝜇𝐶 , 𝐴). 

Proposition 4. If (𝐹𝜇 , 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, then                 

(𝐹𝜇 , 𝐴)
𝐶

≠ (𝐹𝜇𝐶 , 𝐴). 

It is known that based on Definition 9, for any parameter set 𝐴, there is always a complement of 𝐴 

denoted by ¬𝐴. Next, if a soft (𝐹𝜇 , 𝐴) exists, then ¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈), defined by ¬𝐹𝜇(¬𝛼) = 𝐹𝜇(1 − 𝛼) for 

all 𝛼 ∈ 𝐴, can be formed. It can be shown that (¬𝐹𝜇 , ¬𝐴) is a soft set formed from a fuzzy subset 𝜇 over 

universe 𝑈, stated in the following proposition.  

Proposition 5. If (𝐹𝜇 , 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universe 𝑈, then (¬𝐹𝜇 , ¬𝐴) is a 

soft set formed from a fuzzy subset 𝜇 over a universe 𝑈. 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2. Consequently, 1 − 𝛼1 = 1 − 𝛼2 so based on Theorem 

1 and the definition of ¬𝐹𝜇, It is obtained that 𝜇(1−𝛼1) = 𝜇(1−𝛼2) ⟺ ¬𝐹𝜇(¬𝛼1) = ¬𝐹𝜇(¬𝛼2).  Therefore, 
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¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈) is well-defined. Thus, ¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈) is a function. In other words, based on Proposition 

1, it is proved that  (¬𝐹𝜇 , ¬𝐴) is a soft set formed from a fuzzy subset 𝜇 over universe 𝑈. ■  

Hereafter, (¬𝐹𝜇 , ¬𝐴) is called the negation of a soft set (𝐹𝜇 , 𝐴). 

Proposition 6. Let (𝐹𝜇 , 𝐴) be a soft set formed from a fuzzy subset 𝜇 over a universe 𝑈. If 𝜇(𝑢) ≠ 1 − 𝛼 for 

all 𝑢 ∈ 𝑈 then ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. 

Proof. Let 𝛼 be any element of 𝐴. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  

¬𝐹𝜇
𝐶(¬𝛼) = 𝑈 − (¬𝐹𝜇(¬𝛼)) 

   = 𝑈 − 𝐹𝜇(1 − 𝛼) 

= 𝑈 − 𝜇(1−𝛼) 

= 𝑈 − {𝑢 ∈ 𝑈|𝜇(𝑢) ≥ 1 − 𝛼} 

= {𝑢 ∈ 𝑈|𝜇(𝑢) < 1 − 𝛼}. 
On the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 

𝐹𝜇𝐶(𝛼)  = (𝜇𝐶)𝛼 

= {𝑢 ∈ 𝑈|𝜇𝐶(𝑢) ≥ 𝛼} 

= {𝑢 ∈ 𝑈|1 − 𝜇(𝑢) ≥ 𝛼} 

= {𝑢 ∈ 𝑈|𝜇(𝑢) ≤ 1 − 𝛼}. 
Because 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈, it is obtained that 

𝐹𝜇𝐶(𝛼) = {𝑢 ∈ 𝑈|𝜇(𝑢) < 1 − 𝛼}. 

Thus, it is proven that if 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈 then ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. ∎ 

Example 4. Let 𝜇 = {(𝑢1, 0.5), (𝑢2, 0.7), (𝑢3, 0.2), (𝑢4, 1), (𝑢5, 0.9), (𝑢6, 0)}. 

Therefore, (¬𝐹𝜇
𝐶 , ¬𝐴) = {

(¬0, {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6}), (¬0.2, {𝑢1, 𝑢2, 𝑢3, 𝑢6}), (¬0.5, {𝑢3, 𝑢6}),
(¬0.7, {𝑢3, 𝑢6}), (¬0.9, {𝑢6}), (¬1, ∅)

}. 

On the other hand, because 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈, then it is obtained that 

(𝐹𝜇𝐶 , 𝐴) = {
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6}), (0.2, {𝑢1, 𝑢2, 𝑢3, 𝑢6}), (0.5, {𝑢3, 𝑢6}),

(0.7, {𝑢3, 𝑢6}), (0.9, {𝑢6}), (1, ∅)
}. 

Consequently, ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐻𝝁∩𝜈, 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵) if 𝐼𝑚(𝜇) ⊆ 𝐼𝑚(𝜈) or 𝐼𝑚(𝜈) ⊆ 𝐼𝑚(𝜇) where 

𝐶 = 𝐼𝑚(𝜇 ∩ 𝜈).  

Proof. Based on Definition 7, To prove that (𝐻𝝁∩𝜈, 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵), it must be proven that                      

𝐶 ⊆ 𝐴 ∩ 𝐵 and 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐶. 

(i) Let 𝑥 be any element of Im(𝜇 ∩ 𝜈) so there exists 𝑢 ∈ 𝑈 such that 𝑥 = (𝜇 ∩ 𝜈)(𝑢), then based on 

Definition 4, it is obtained that 𝑥 = min{𝜇(𝑢), 𝜈(𝑢)}. 

1) Assuming that 𝜇(𝑢) ≤ 𝜈(𝑢), it is obtained that 𝑥 = 𝜇(𝑢) which means 𝑥 ∈ Im(𝜇). Next, as     

Im(𝜇) ⊆ Im(𝜈) then 𝑥 ∈ Im(𝜈). Hence, it is obtained that 𝑥 ∈ Im(𝜇) and 𝑥 ∈ Im(𝜈) in other words 

𝑥 ∈ Im(𝜇) ∩ Im(𝜈). Consequently, Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈). 

2) Assuming that 𝜈(𝑢) ≤ 𝜇(𝑢), it is obtained that 𝑥 = 𝜈(𝑢) which means 𝑥 ∈ Im(𝜈).  Next, as 

Im(𝜈) ⊆ Im(𝜇) then 𝑥 ∈ Im(𝜇). Hence, it is obtained that 𝑥 ∈ Im(𝜇) and 𝑥 ∈ Im(𝜈) in other words 

𝑥 ∈ Im(𝜇) ∩ Im(𝜈). Consequently, Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈). 

From 1) and 2), it is obtained that Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈), so based on Proposition 1, it is proven 

that 𝐶 ⊆ 𝐴 ∩ 𝐵. 
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(ii) Let 𝛾 be any element of 𝐶. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  

𝐻𝜇∩𝜈(𝛾) = (𝜇 ∩ 𝜈)𝛾  

= 𝜇𝛾 ∩ 𝜈𝛾  

= 𝐹𝜇(𝛾) ∩ 𝐺𝜈(𝛾)  

= (𝐹𝜇 ∩ 𝐺𝜈)(𝛾)  

It is obtained that 𝐻𝝁∩𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Thus, it is proven that 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 

𝛾 ∈ 𝐶. 

From (i) and (ii), it is obtained that (𝐻𝝁∩𝜈, 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈, 𝐵).∎ 

Example 5. Let 𝜇 = {(𝑢1, 0.8), (𝑢2, 0.1), (𝑢3, 0.7), (𝑢4, 0.4), (𝑢5, 0.7)} and 𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.9), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.8)}. Therefore, Im(𝜇) ⊆ Im(𝜈) and 𝐴 ∩ 𝐵 =
{0.1, 0.4, 0.7, 0.8}. On the other hand, based on Definition 4, it is obtained that 𝜇 ∩ 𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.1), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.7)} such that 𝐶 = 𝐼𝑚(𝜇 ∩ 𝜈) = {0.1, 0.4, 0.7}. Thus, 𝐶 ⊆ 𝐴 ∩

𝐵. Furthermore, it is obtained that (𝐻𝝁∩𝜈, 𝐶) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢4, 𝑢5}),

 (0.7, {𝑢1, 𝑢5})
} and 

((𝐹𝜇 ∩ 𝐺𝜈), 𝐶) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢4, 𝑢5}),

 (0.7, {𝑢1, 𝑢5})
}. 

It is obtained that 𝐻𝝁∩𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Consequently, 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐶. 

Thus, (𝐻𝝁∩𝜈, 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈, 𝐵). 

Proposition 8. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐼𝝁∪𝜈, 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈, 𝐵) if 𝜇𝛾 ⊆ 𝜈𝛾 when 𝛾 ∈ 𝐵 − 𝐴 and 𝜈𝛾 ⊆ 𝜇𝛾 when 

𝛾 ∈ 𝐴 − 𝐵 where 𝐷 = 𝐼𝑚(𝜇 ∪ 𝜈). 

Proof. Based on Definition 7, to prove that (𝐼𝝁∪𝜈 , 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈 , 𝐵), it must be proven that 𝐷 ⊆ 𝐴 ∪ 𝐵 

and 𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∪ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷.  

(i) Let 𝑥 be any element of Im(𝜇 ∪ 𝜈) so there exists 𝑢 ∈ 𝑈 such that 𝑥 = (𝜇 ∪ 𝜈)(𝑢), then based on 

Definition 4, it is obtained that 𝑥 = max{𝜇(𝑢), 𝜈(𝑢)}. 

1) Assuming that 𝜇(𝑢) ≥ 𝜈(𝑢), it is obtained that 𝑥 = 𝜇(𝑢) which means 𝑥 ∈ Im(𝜇).  

2) Assuming that 𝜈(𝑢) ≥ 𝜇(𝑢), it is obtained that 𝑥 = 𝜈(𝑢) which means 𝑥 ∈ Im(𝜈).  

From 1) and 2), it is obtained that 𝑥 ∈ Im(𝜇) or 𝑥 ∈ Im(𝜈) in other words 𝑥 ∈ Im(𝜇) ∪ Im(𝜈). 

Consequently, Im(𝜇 ∪ 𝜈) ⊆ Im(𝜇) ∪ Im(𝜈), so based on Proposition 1, it is proven that 𝐷 ⊆ 𝐴 ∪ 𝐵. 

(ii) Based on Definition 12, for all 𝛾 ∈ 𝐷 holds 

(𝐹𝜇 ∪ 𝐺𝜈)(𝛾) = {

                    𝐹𝜇(𝛾),                  𝛾 ∈ 𝐴 − 𝐵     

                     𝐺𝜈(𝛾),                  𝛾 ∈ 𝐵 − 𝐴      

𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾),                  𝛾 ∈ 𝐴 ∩ 𝐵.

 

1) If 𝛾 ∈ 𝐴 − 𝐵 

Let 𝛾 be any element of 𝐴 − 𝐵 and if 𝛾 ∈ 𝐴 − 𝐵 then 𝜈𝛾 ⊆ 𝜇𝛾. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝜇𝛾 

= 𝐹𝜇(𝛾) 

              It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐹𝜇(𝛾) when 𝛾 ∈ 𝐴 − 𝐵. 

2) If 𝛾 ∈ 𝐵 − 𝐴 

Let 𝛾 be any element of 𝐵 − 𝐴 and if 𝛾 ∈ 𝐵 − 𝐴 then 𝜇𝛾 ⊆  𝜈𝛾 . Then, based on Theorem 2 and 

Proposition 1, it is obtained that 

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝜈𝛾 

= 𝐺𝜈(𝛾) 
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              It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐺𝜈(𝛾) when 𝛾 ∈ 𝐵 − 𝐴. 

3) If 𝛾 ∈ 𝐴 ∩ 𝐵 

 Let 𝛾 be any element of 𝐴 ∩ 𝐵. Based on Theorem 2 and Proposition 1, it is obtained that 

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾) 

 It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾) when 𝛾 ∈ 𝐴 ∩ 𝐵. 

From 1), 2), and 3), it is obtained that 𝐼𝝁∪𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Thus, it is proven that                          

𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷. 

From (i) and (ii), it is obtained that (𝐼𝝁∪𝜈, 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈, 𝐵). ∎ 

Example 6. Let 𝜇 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.4), (𝑢4, 0.9)} and 𝜈 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.6), (𝑢4, 0.8)}. 
Therefore, 𝐴 ∪ 𝐵 = {0, 0.2, 0.4, 0.6, 0.8, 0.9}. On the other hand, based on Definition 4, it is obtained that 

𝜇 ∪ 𝜈 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.6), (𝑢4, 0.9)} such that 𝐷 = 𝐼𝑚(𝜇 ∪ 𝜈) = {0, 0.2, 0.6, 0.9}. Thus, 𝐷 ⊆

𝐴 ∪ 𝐵. Next, it is obtained that (𝐼𝝁∪𝜈, 𝐷) = {
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢4}), (0.2, {𝑢2, 𝑢3, 𝑢4}),

(0.6, {𝑢3, 𝑢4}), (0.9, {𝑢4})
} and ((𝐹𝜇 ∪ 𝐺𝜈), 𝐷) =

{
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢4}), (0.2, {𝑢2, 𝑢3, 𝑢4}),

(0.6, {𝑢3, 𝑢4}), (0.9, {𝑢4})
}. 

It is obtained that 𝜈𝛾 ⊆ 𝜇𝛾 when 𝛾 ∈ 𝐴 − 𝐵 and 𝜇𝛾 ⊆ 𝜈𝛾 when 𝛾 ∈ 𝐵 − 𝐴. Furthermore, it is obtained that 

𝐼𝝁∪𝜈(𝛾) = (𝐹𝜇 ∪ 𝐺𝜈)(𝛾). Consequently, 𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∪ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷. Thus, it is obtained that 

(𝐼𝝁∪𝜈, 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈, 𝐵). 

Proposition 9. If (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) are two soft set respectively formed from fuzzy subsets 𝜇 and 𝜈 over the 

universal set 𝑈 then (𝐻, 𝐶) is a soft set formed from the OR operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵)  defined as  

𝐻: 𝐶 → 𝑃(𝑈) 

where 𝐶 = 𝐴 × 𝐵 and 𝐻(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Furthermore, if (𝐼(𝜇∪𝜈), 𝐷) is a soft 

set formed from the union operation on fuzzy subsets 𝜇 and 𝜈 then 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)) with the 

sufficient condition 𝛾 ≥ 𝑚𝑎𝑥{𝛼, 𝛽} for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

Proof. Let 𝑢 be any element of (𝜇 ∪ 𝜈)𝛾, it means 𝑢 ∈ {𝑢 ∈ 𝑈|(𝜇 ∪ 𝜈) ≥ 𝛾}, then based on the definition of 

(𝜇 ∪ 𝜈)(𝑢) it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈| max{𝜇(𝑢), 𝜈(𝑢)} ≥ 𝛾}. 

a) Assuming that 𝜇(𝑢) ≥ 𝜈(𝑢), it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|𝜇(𝑢) ≥ 𝛾}, so that 𝜇(𝑢) ≥ 𝛾. In other words, 

𝑢 ∈ 𝜇𝛾.  

b) Assuming that 𝜈(𝑢) ≥ 𝜇(𝑢), it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|𝜈(𝑢) ≥ 𝛾}, so that 𝜈(𝑢) ≥ 𝛾. In other words, 

𝑢 ∈ 𝜈𝛾.  

From a) and b), it is obtained that 𝑢 ∈ 𝜇𝛾 or 𝑢 ∈ 𝜈𝛾, so that 𝑢 ∈ 𝜇𝛾 ∪ 𝜈𝛾. Furthermore, because 𝛾 ≥

max{𝛼, 𝛽} then 𝛾 ≥ 𝛼 and 𝛾 ≥ 𝛽, so that 𝑢 ∈ 𝜇𝛼 ∪ 𝜈𝛽. In other words,  (𝜇 ∪ 𝜈)𝛾 ⊆ 𝜇𝛼 ∪ 𝜈𝛽. Thus, it is 

proven that 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)).■ 

Hence, it is obtained that the definition of OR operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) is  

(𝐹𝝁, 𝐴) ∨̃ (𝐺𝜈 , 𝐵) = (𝐻, 𝐴 × 𝐵), 

where 𝐻(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. 

Example 7. Let 𝜇 = {(𝑢1, 0.2), (𝑢2, 0.8), (𝑢3, 0.5)} and 𝜈 = {(𝑢1, 0.8), (𝑢2, 0.3), (𝑢3, 0.2)}. 

It is obtained that 

(𝐹𝜇 , 𝐴) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.5, {𝑢2, 𝑢3}), (0.8, {𝑢2})}, 

(𝐺𝜈 , 𝐵) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.3, {𝑢1, 𝑢2}), (0.8, {𝑢1})}, 
𝐷 = Im (𝜇 ∪ 𝜈) = {0.5, 0.8}, and (𝐼(𝜇∪𝜈), 𝐷) = {(0.5, {𝑢1, 𝑢2, 𝑢3}), (0.8, {𝑢1, 𝑢2})}  

Thus, when 𝛾 ≥ max{𝛼, 𝛽}, obtained that 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)) for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷.  

Proposition 10. If (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) are two soft sets respectively formed from fuzzy subsets 𝜇 and 𝜈 over 

the universal set 𝑈 then (𝐽, 𝐶) is a soft set formed from the AND operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵)  defined as  

𝐽: 𝐶 → 𝑃(𝑈) 
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where 𝐶 = 𝐴 × 𝐵 and 𝐽(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Furthermore, if (𝐾(𝜇∩𝜈), 𝐷) is a soft 

set formed from the intersection operation on fuzzy subsets 𝜇 and 𝜈 then (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾) with 

the sufficient condition 𝛾 ≤ 𝑚𝑖𝑛{𝛼, 𝛽} for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

Proof. Let 𝑢 be any element of 𝜇𝛼 ∩ 𝜈𝛽, it means 𝑢 ∈ 𝜇𝛼 and 𝑢 ∈ 𝜈𝛽. Furthermore, because 𝛾 ≤ min{𝛼, 𝛽}, 

it is obtained that 𝛾 ≤ 𝛼 and 𝛾 ≤ 𝛽, so that 𝑢 ∈ 𝜇𝛾 and 𝑢 ∈ 𝜈𝛾. Then based on Definition 5, 𝜇(𝑢) ≥ 𝛾 and 

𝜈(𝑢) ≥ 𝛾 are obtained, thus 𝑢 ∈ {𝑢 ∈ 𝑈| max{𝜇(𝑢), 𝜈(𝑢)} ≥ 𝛾}, based on the definition of (𝜇 ∩ 𝜈)(𝑢), it is 

obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|(𝜇 ∩ 𝜈)(𝑢) ≥ 𝛾}, so that 𝑢 ∈ (𝜇 ∩ 𝜈)𝛾. In other words, 𝜇𝛼 ∩ 𝜈𝛽 ⊆ (𝜇 ∩ 𝜈)𝛾. Thus, 

it is proven that (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾).■ 

Hence, it is obtained that the definition of AND operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈, 𝐵) is  

(𝐹𝝁, 𝐴) ∧̃ (𝐺𝜈, 𝐵) = (𝐽, 𝐴 × 𝐵), 

where 𝐽(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. 

Example 8. Based on Example 7, It is obtained (𝐹𝜇 , 𝐴), (𝐺𝜈, 𝐵), 𝐷 = Im (𝜇 ∩ 𝜈) = {0.2, 0.3}, and 

(𝐾(𝜇∩𝜈), 𝐷) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.3, {𝑢2})}  

Thus, when 𝛾 ≤ min{𝛼, 𝛽}, obtained that (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾) for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

4. CONCLUSIONS 

Based on the result and discussion, it is obtained that every fuzzy subset can be formed as a soft set, 

with the parameter set being the image of that fuzzy subset. The sufficient condition for a soft set formed 

from the fuzzy subset 𝜇 is a subset of the soft set formed from the fuzzy subset 𝜈 over the same universal set 

if 𝜇 is a fuzzy subsubset of 𝜈. Furthermore, the complement of a soft set formed from a fuzzy subset is also 

a soft set formed from a fuzzy subset. If (𝐾(𝜇∩𝜈), 𝐼𝑚(𝜇 ∩ 𝜈)) and (𝐼(𝜇∪𝜈), 𝐼𝑚(𝜇 ∪ 𝜈)) are soft sets formed 

from the intersection and union operations on fuzzy subsets 𝜇 and 𝜈, respectively, then (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆

𝐾(𝜇∩𝜈)(𝛾) with the sufficient condition 𝛾 ≤ min{𝛼, 𝛽} for all 𝛼 ∈ 𝐼𝑚(𝜇), 𝛽 ∈ 𝐼𝑚(𝜈), and 𝛾 ∈ 𝐼𝑚(𝜇 ∩ 𝜈). If 

𝛾 ≥ max{𝛼, 𝛽} for all 𝛼 ∈ 𝐼𝑚(𝜇), 𝛽 ∈ 𝐼𝑚(𝜈), and 𝛾 ∈ 𝐼𝑚(𝜇 ∪ 𝜈) then  𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)). 
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Molodtsov introduced the concept of soft sets formed from fuzzy subsets in 1999. The soft set formed from

a fuzzy subset is a particular form of a soft set on its parameter set. On a soft set formed from a fuzzy

subset, the parameter used is the image of a fuzzy subset which is then mapped to the collection of all

subsets of a universal set. This research explains the construction of soft sets formed from fuzzy subsets.

We provide the sufficient condition that a soft set formed from a fuzzy subset is a subset of another soft

set. Also, give some properties of the soft sets formed from a fuzzy subset related to complement and

operations concepts in soft sets
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1. INTRODUCTION 

A set is a well-defined collection of objects that can be distinguished as which are members and which 

are not members. Members of a set are objects that have certain similarities [1]. The level of similarity of 

objects is relative, so there is uncertainty in grouping these objects. This case is the basis for grouping objects 

using varying degrees of similarity. The grouping process, which tends to show varying levels of similarity, 

makes it difficult to group using concepts from classical set theory. Therefore, a more relevant theory is 

needed to help solve the problem [2]. 

One of the theories that can assist in solving problems regarding uncertainty is the fuzzy subset theory. 

The fuzzy subset theory written by Zadeh [3], [4] solves uncertainty caused by a set's unclear properties and 

character. In the fuzzy subset theory, there is a value of membership or degree of membership indicating an 

object's membership level to a particular group.  

Several years after using the concept of fuzzy subsets, Molodtsov [2] described the weaknesses in the 

fuzzy subset theory. According to Molodtsov, fuzzy subset theory still has difficulties determining the 

membership function in each case caused by the inadequacy of the parameterization tools in theory. 

Therefore, to overcome this, Molodtsov (1999) [5] introduced a new theory known as the soft set theory. 

Molodtsov explained that a soft set is a collection of parameterization subsets in a universe set.  

In 1999 Molodtsov also introduced the concept of a soft set formed from a fuzzy subset which was 

later clarified by Aktaş & Çaǧman [6]. Let 𝜇: 𝑈 → [0,1] be a fuzzy set over a set 𝑈 and 𝜇𝛼 be an 𝛼-level 

subset. We can defined a soft set (𝐹𝜇, 𝐴) with 𝐹𝜇: 𝐴 → 𝑃(𝑈), 𝛼 ↦ 𝜇𝛼 and 𝐴 = 𝐼𝑚(𝜇).  

As science progressed, fuzzy subsets and soft sets developed into new concepts and applications in 

decision problems. Maji et al. [7] defined a hybrid model called fuzzy soft sets. This new model combines 

fuzzy with soft sets and generalized soft sets. Irfan Ali and Shabir [8] developed the theory. They give De 

Morgan-type laws, as given in the Maji et al. paper, which are generally untrue. They also provide some new 

definitions and operations for fuzzy soft sets, making it very easy to prove the existence of De Morgan type 

laws in fuzzy soft sets. To address decision-making problems based on fuzzy soft sets, Feng et al. introduced 

the concept of level soft sets of fuzzy soft sets. They initiated an adjustable decision-making scheme using 

fuzzy soft sets [9], followed by a generalized soft fuzzy set [10] and its application to the student ranking 

system [11].   

Research on soft sets has also been developed by integrating other fields, including algebra, and its 

applications in the real world. In the field of algebra, they include soft matrices introduced by Çaǧman and 

Enginoǧlu [12],  soft groups introduced by Aktaş and Cağman [6], soft semiring by Feng et al. [13], soft 

rings by Acar et al. [14], and soft modules by Sun et al.[15], which until now continue to develop, can see in 

[16], [17], [18], [19], [20], [21], [22], and [23]. Some applications of soft sets in the real world can see in 

[24], [25], [26], [27], [28], [29], [30], [31], [32] and much more. 

Based on the explanation of the concept of fuzzy subsets, soft sets, and soft sets formed from fuzzy 

subsets, several questions were raised, how is the construction of a soft set formed from a fuzzy subset? Then, 

the subset and complement properties that apply to soft sets also apply to soft sets formed from fuzzy subsets. 

Furthermore, to prove the properties of the intersection, union, OR, and AND operations of two soft sets 

formed from fuzzy subsets. 

2. RESEARCH METHODS 

In this research, the steps used are as follows. 

1. Explaining the definition of fuzzy subsets and 𝛼 −cut on fuzzy subsets. 

2. Explaining the definition of soft sets. 

3. Proving and giving examples to the propositions regarding soft sets formed from fuzzy subsets. 

4. Proving and giving examples to the propositions related to the properties of subsets, complements, and 

the operations of intersection, union, OR, and AND on soft sets formed from fuzzy subsets. 

5. Writing a conclusion. 
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2.1 Fuzzy Subsets 

A function from an empty set 𝑈 to interval [0,1] is called a subset fuzzy of 𝑈 that defined as follows. 

Definition 1. [3] Let 𝑈 be a non-empty set. A fuzzy subset 𝜇 of 𝑈 is defined as a mapping 

𝜇: 𝑈 →  [0,1]. 

The function 𝜇 is called a fuzzy subset of 𝑈 and can be expressed by 𝜇 = {(𝑢, 𝜇(𝑢))|𝑢 ∈ 𝑈}, where 

𝜇(𝑢) is the membership degree of 𝑢 ∈ 𝑈 for a fuzzy subset 𝜇. The collection of all fuzzy subsets of 𝑈 denoted 

by ℱ(𝑈), i.e., ℱ(𝑈) = {𝜇|𝜇: 𝑈 → [0,1]}. 

 Analog with the concept of set, in the concept of fuzzy subset there are the concepts of fuzzy 

subsubset and fuzzy complement, and the concept of intersection and union operations that given as follows. 

Definition 2. [3] Let 𝜇, 𝜈 ∈  ℱ(𝑈). If 𝜇(𝑢) ≤ 𝜈(𝑢) for all  𝑢 ∈ 𝑈, then 𝜇 is contained in 𝜈 and can be written 

𝜇 ⊆ 𝜈 (𝜈 ⊇ 𝜇). If 𝜇 ⊆ 𝜈 and 𝜇 ⊇ 𝜈 then 𝜇 is equal to 𝜈 and can be written 𝜇 = 𝜈.  

Definition 3. [3] Let 𝜇 be a fuzzy subset of 𝑈. The complement of 𝜇 is the fuzzy subset 𝜇𝑐, where 

𝜇𝑐(𝑢)  =  1 − 𝜇(𝑢) 

Definition 4. [3] Let 𝜇, 𝜈 ∈ ℱ(𝑈). The intersection and union of 𝜇 and 𝜈 is the fuzzy subsets 𝜇 ∩ 𝜈 and 𝜇 ∪ 𝜈, 

where 

(𝜇 ∩ 𝜈)(𝑢) = min{𝜇(𝑢), 𝜈(𝑢)}  =  𝜇(𝑢) ∧ 𝜈(𝑢) 
(𝜇 ∪ 𝜈)(𝑢) = max{𝜇(𝑢), 𝜈(𝑢)}  =  𝜇(𝑢) ∨ 𝜈(𝑢) 

𝟐. 𝟐 𝜶 −Cut on Fuzzy Subsets 

Let 𝝁 be any fuzzy subset of 𝑼. The subset of 𝑼, that the membership degree is more or equal to any 

𝜶 ∈ [𝟎. 𝟏] is called 𝜶-level subset, defined as following. 

Definition 5. [3] Let 𝜇 ∈ ℱ(𝑈). For all 𝛼 ∈ [0,1] can be defined α-level subset (𝛼 − 𝑐𝑢𝑡) of μ, which is 

denoted by 𝜇𝛼, i.e. 

𝜇𝛼 = {𝑢|𝑢 ∈ 𝑈, 𝜇(𝑢) ≥ 𝛼}. 

There is some properties about 𝛼-level subset connecting with properties of subset fuzzy, given as 

following theorem. 

Theorem 1. [33]  Let 𝜇, 𝜈 ∈ ℱ(𝑈), for all 𝛼, 𝛽 ∈ [0,1] the following properties hold true  

1) 𝜇 ⊆  𝜈 ⇒ 𝜇𝛼  ⊆ 𝜈𝛼  

2) 𝛼 ≤ 𝛽 ⇒ 𝜇𝛽  ⊆  𝜇𝛼 

3) 𝛼 = 𝛽 ⇒ 𝜇𝛽 = 𝜇𝛼  

4) 𝜇 = 𝜈 ⟺ 𝜇𝛼 = 𝜈𝛼.  

Theorem 2. [34] Let 𝜇, 𝜈 ∈ ℱ(𝑈), for all 𝛼 ∈ [0,1], the following properties hold true  

1) (𝜇 ∪ 𝜈)𝛼 = 𝜇𝛼 ∪ 𝜈𝛼 
2) (𝜇 ∩ 𝜈)𝛼 = 𝜇𝛼 ∩ 𝜈𝛼 .  

2.3 Soft Sets 

In 1999, Molodsov introduced the concept of a soft set which is a pair consisting of a function from a 

set of parameters 𝑨 to the power set of a universal set 𝑼 and 𝑨. The formal definition of a soft set is provided 

below  

Definition 6. [2] Let 𝑈 be a universal set and 𝐴 be a set of parameters. A pair (𝐹, 𝐴) is called a soft set over 

𝑈 where 𝐹 is a mapping given by 

𝐹: 𝐴 → 𝑃(𝑈) 

For 𝑎 ∈ 𝐴,  𝐹(𝑎) may be considered as the set 𝑎-approximate elements of the soft set (𝐹, 𝐴). A soft set over 

𝑈 can be expressed by (𝐹, 𝐴)  =  {(𝑎, 𝐹(𝑎))|𝑎 ∈ 𝐴}.  

 The connection between two soft sets is given by this following definition. 

Definition 7. [35] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.  Then (𝐹, 𝐴) is called a soft subset of (𝐺, 𝐵) 

denoted by (𝐹, 𝐴) ⊆̂ (𝐺, 𝐵), if 

1) 𝐴 ⊆ 𝐵 and 
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2) for all 𝑎 ∈ 𝐴, 𝐹(𝑎) ⊆ 𝐺(𝑎).  

Definition 8. [35] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Then (𝐹, 𝐴) and (𝐺, 𝐵) are said to be equal, 

denoted by (𝐹, 𝐴) = (𝐺, 𝐵), if (𝐹, 𝐴) ⊆̂ (𝐺, 𝐵) and (𝐺, 𝐵) ⊆̂ (𝐹, 𝐴).  

The concept of soft sets includes definitions for complement and relative complement and operations 

such as intersection, union, OR and AND  between two soft sets. These definitions are presented in a specific 

order. 

Definition 9. [36] Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} be a set of parameters. The complement of 𝐴 denoted by       

¬𝐴 = {¬𝑎1, ¬𝑎2, ¬𝑎3, … , ¬𝑎𝑛} where ¬𝑎𝑖 is “not 𝑎𝑖”  and ¬(¬𝑎𝑖) = 𝑎𝑖, for all 𝑖 = 1,2, … , 𝑛.  

Definition 10. [37] The relative complement of a soft set (𝐹, 𝐴) is denoted by (𝐹, 𝐴)𝐶 and is defined by 

(𝐹, 𝐴)𝐶 = (𝐹𝐶 , 𝐴), where 𝐹𝐶 : 𝐴 → 𝑃(𝑈) is a mapping given by 𝐹𝐶(𝑎) = 𝑈 − 𝐹(𝑎), for all 𝑎 ∈ 𝐴.  

Definition 11. [13] Bi-intersection of two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over 𝑈 is defined to be the soft set (𝐻, 𝐶) 

where 𝐶 = 𝐴 ∩ 𝐵 and for all 𝑥 ∈ 𝐶, 𝐻(𝑥) = 𝐹(𝑥) ∩ 𝐺(𝑥). The bi-intersection of (𝐹, 𝐴) and (𝐺, 𝐵) is denoted 

by (𝐹, 𝐴) ∩̂ (𝐺, 𝐵) = (𝐻, 𝐶).  

Definition 12. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈.  The union of (𝐹, 𝐴) and (𝐺, 𝐵) is defined 

to be a soft set (𝐼, 𝐷), where 𝐷 = 𝐴 ∪ 𝐵 and for all 𝑥 ∈ 𝐷 satisfying the following conditions 

𝐼(𝑥) = {

                    𝐹(𝑥),                  𝑥 ∈ 𝐴 − 𝐵     
                     𝐺(𝑥),                  𝑥 ∈ 𝐵 − 𝐴      

𝐹(𝑥) ∪ 𝐺(𝑥),                   𝑥 ∈ 𝐴 ∩ 𝐵.
 

The union of (𝐹, 𝐴) and (𝐺, 𝐵) is denoted by (𝐹, 𝐴) ⨆ (𝐺, 𝐵) = (𝐼, 𝐷).  

Definition 13. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Operation OR from (𝐹, 𝐴) and 
(𝐺, 𝐵), denoted by (𝐹, 𝐴) ∨̂ (𝐺, 𝐵), is defined to be a soft set (𝐻, 𝐴 × 𝐵), where 𝐻(𝑎, 𝑏) = 𝐹(𝑎) ∪ 𝐺(𝑏), for 

all (𝑎, 𝑏) ∈ 𝐴 × 𝐵.  

Definition 14. [36] Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets over 𝑈. Operation AND from (𝐹, 𝐴) and 
(𝐺, 𝐵), denoted by (𝐹, 𝐴) ∧̂ (𝐺, 𝐵), is defined to be a soft set (𝐼, 𝐴 × 𝐵), where 𝐼(𝑎, 𝑏) = 𝐹(𝑎) ∩ 𝐺(𝑏), for 

all (𝑎, 𝑏) ∈ 𝐴 × 𝐵.  

3. RESULT AND DISCUSSION 

This section explains that a soft set can be formed from the fuzzy subsets, with the parameter 

set being the level subset obtained from the fuzzy subset. This section also provides the properties 

of soft sets formed by fuzzy sets related to subsets and operations concepts in the soft sets. 

3.1 The Construction of Soft Sets from Fuzzy Subsets 

According to the following proposition, a soft set can be created from a fuzzy subset, where a parameter 

of the soft set represents the image of the fuzzy subset.  

Proposition 1. Let 𝑈 be a universal set, 𝜇: 𝑈 → [0,1] be a fuzzy set where 𝐴 = 𝐼𝑚(𝜇) ⊆ [0,1]. A pair (𝐹𝜇 , 𝐴) 

is a soft set where 𝐹𝜇: 𝐴 → 𝑃(𝑈) which is defined as 𝐹𝜇(𝛼) = 𝜇𝛼 , for all 𝛼 ∈ 𝐴. Furthermore, soft set (𝐹𝜇 , 𝐴) 

is called a soft set over 𝑈, formed from a fuzzy subset 𝜇. 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2, so based on Theorem 1 and the definition of 𝐹𝜇, it is 

obtained that 𝜇𝛼1
= 𝜇𝛼2

⟺ 𝐹𝜇(𝛼1) = 𝐹𝜇(𝛼2), thus 𝐹𝜇: 𝐴 → 𝑃(𝑈) is well defined. Therefore,  𝐹𝜇: 𝐴 → 𝑃(𝑈) 

is a function. In other words, based on Definition 6, it was proved that (𝐹𝜇 , 𝐴) is a soft set over the universal 

set 𝑈. ■ 

Example 1. Let 𝜇 = {(𝑢1, 0.4), (𝑢2, 0.8), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.7)}. Thus, the soft set (𝐹𝜇, 𝐴) was 

obtained as follows.  

(𝐹𝜇 , 𝐴) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢2, 𝑢4, 𝑢5}),

(0.7, {𝑢2, 𝑢5}), (0.8, {𝑢2}) 
} 
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3.2 Properties of Subsets and Complements of Soft Sets Formed from Fuzzy Subsets 

In this section, we will talk about the properties of subsets and complements that are applicable to soft 

sets made from fuzzy subsets. These properties are presented in the following proposition. 

Proposition 2. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐹𝜇 , 𝐴) is a subset of (𝐺𝜈 , 𝐵) if 𝐴 ⊆ 𝐵 and 𝜇 ⊆ 𝜈. 

Proof. It is known that 𝐴 ⊆ 𝐵 and based on Theorem 1, if 𝜇 ⊆ 𝜈, then 𝜇𝛼 ⊆ 𝜈𝛼 . In other words, based on 

Proposition 1, it is obtained that 𝐹𝜇(𝛼) ⊆ 𝐺𝜈(𝛼) for all 𝛼 ∈ 𝐴. Therefore, based on Definition 7, it is obtained 

that (𝐹𝜇 , 𝐴) ⊆̃ (𝐺𝜈 , 𝐵). ∎ 

Example 2. Based on Example 1, a fuzzy subset 𝜇 is obtained. Next, let the fuzzy subset 𝜈 be given by         𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.9), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.8)}. From Example 1 we have 𝐴 = 𝐼𝑚(𝜇) =

{0.1, 0.4, 0.7, 0.8}. Since 𝐵 = 𝐼𝑚(𝜈) = {0.1, 0.4, 0.7, 0.8, 0.9}, it is obtained that 𝐴 ⊆ 𝐵 and 𝜇(𝑢) ≤
𝜈(𝑢) for all  𝑢 ∈ 𝑈.  Furthermore, based on Definition 2, it is obtained that 𝜇 ⊆ 𝜈. 

Next, it is obtained that (𝐺𝜈 , 𝐴) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢2, 𝑢4, 𝑢5}),

(0.7, {𝑢1, 𝑢2, 𝑢5}), (0.8, {𝑢2, 𝑢5}) 
} 

Consequently, 𝐹𝜇(𝛼) ⊆ 𝐺𝜈(𝛼) for all 𝛼 ∈ 𝐴. Thus, it was obtained that (𝐹𝜇 , 𝐴) ⊆̃ (𝐺𝜈 , 𝐵). 

Based on Definition 10, it is known that the complement of a soft set (𝐹, 𝐴) is defined as (𝐹𝐶 , 𝐴). 

Next, in this research, it is defined that (𝐹𝜇 , 𝐴)
𝐶

= (𝐹𝜇
𝐶 , 𝐴) where 𝐹𝜇

𝐶(𝛼) = 𝑈 − 𝐹𝜇(𝛼) for all 𝛼 ∈ 𝐴. The 

following proposition states (𝐹𝜇 , 𝐴)
𝐶

 as a soft set over a universal set 𝑈 that is formed from a fuzzy subset 𝜇. 

Proposition 3. If (𝐹𝜇, 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, then (𝐹𝜇 , 𝐴)
𝐶

 is a 

soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, where (𝐹𝜇, 𝐴)
𝐶

= (𝐹𝜇
𝐶 , 𝐴). 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2, so based on Theorem 1 and the definition of 𝐹𝜇, It is 

obtained that 𝜇𝛼1
= 𝜇𝛼2

⟺ 𝐹𝜇(𝛼1) = 𝐹𝜇(𝛼2). Consequently, based on the definition of 𝐹𝜇
𝐶 , it is obtained that 

𝑈 − 𝐹𝜇(𝛼1) = 𝑈 − 𝐹𝜇(𝛼2) ⟺ 𝐹𝜇
𝐶(𝛼1) = 𝐹𝜇

𝐶(𝛼2). Therefore, 𝐹𝜇
𝐶 : 𝐴 → 𝑃(𝑈) is well-defined. Thus,      

𝐹𝜇
𝐶 : 𝐴 → 𝑃(𝑈) is a function. In other words, based on Proposition 1, it is proved that (𝐹𝜇, 𝐴)

𝐶
 is a soft set 

formed from a fuzzy subset 𝜇 over universe 𝑈. ■  

Next, the soft set (𝐹𝜇 , 𝐴)
𝐶

is called the complement of a soft set (𝐹𝜇 , 𝐴). Based on Definition 3, It is 

knownthat for any fuzzy subset 𝜇, there is always a complement of 𝜇 that is denoted by 𝜇𝐶 . The complement 

of a soft set formed from a fuzzy subset is not equal to a soft set formed from the complement of a fuzzy 

subset. The example and proposition below illustrate this concept.. 

Example 3. Based on Example 1, a fuzzy subset 𝜇 is obtained. Therefore, (𝐹𝜇
𝐶 , 𝐴 ) =

{
(0.1, ∅), (0.4, {𝑢3}),

(0.7, {𝑢1, 𝑢3, 𝑢4}), (0.8, {𝑢1, 𝑢3, 𝑢4, 𝑢5}) 
} and (𝐹𝜇𝐶 , 𝐴 ) = {

(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢3, 𝑢4}),
(0.7, {𝑢3}), (0.8, {𝑢3}) 

}. It 

is obtained that (𝐹𝜇
𝐶 , 𝐴) ≠ (𝐹𝜇𝐶 , 𝐴). In other words, (𝐹𝜇, 𝐴)

𝐶
≠ (𝐹𝜇𝐶 , 𝐴). 

Proposition 4. If (𝐹𝜇, 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universal set 𝑈, then                 

(𝐹𝜇 , 𝐴)
𝐶

≠ (𝐹𝜇𝐶 , 𝐴). 

It is known that based on Definition 9, for any parameter set 𝐴, there is always a complement of 𝐴 

denoted by ¬𝐴. Next, if a soft (𝐹𝜇 , 𝐴) exists, then ¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈), defined by ¬𝐹𝜇(¬𝛼) = 𝐹𝜇(1 − 𝛼) for 

all 𝛼 ∈ 𝐴, can be formed. It can be shown that (¬𝐹𝜇 , ¬𝐴) is a soft set formed from a fuzzy subset 𝜇 over 

universe 𝑈, stated in the following proposition.  

Proposition 5. If (𝐹𝜇, 𝐴) is a soft set formed from a fuzzy subset 𝜇 over a universe 𝑈, then (¬𝐹𝜇 , ¬𝐴) is a 

soft set formed from a fuzzy subset 𝜇 over a universe 𝑈. 

Proof. Let 𝛼1, 𝛼2 be any element of 𝐴 where 𝛼1 = 𝛼2. Consequently, 1 − 𝛼1 = 1 − 𝛼2 so based on Theorem 

1 and the definition of ¬𝐹𝜇, It is obtained that 𝜇(1−𝛼1) = 𝜇(1−𝛼2) ⟺ ¬𝐹𝜇(¬𝛼1) = ¬𝐹𝜇(¬𝛼2).  Therefore, 



1478 Hijriati, et. al.   THE CONSTRUCTION OF SOFT SETS FROM FUZZY…  

 

¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈) is well-defined. Thus, ¬𝐹𝜇: ¬𝐴 → 𝑃(𝑈) is a function. In other words, based on Proposition 

1, it is proved that  (¬𝐹𝜇 , ¬𝐴) is a soft set formed from a fuzzy subset 𝜇 over universe 𝑈. ■  

Hereafter, (¬𝐹𝜇 , ¬𝐴) is called the negation of a soft set (𝐹𝜇 , 𝐴). 

Proposition 6. Let (𝐹𝜇 , 𝐴) be a soft set formed from a fuzzy subset 𝜇 over a universe 𝑈. If 𝜇(𝑢) ≠ 1 − 𝛼 for 

all 𝑢 ∈ 𝑈 then ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. 

Proof. Let 𝛼 be any element of 𝐴. Based on Proposition 1, Proposition 3, and Proposition 5, it is obtained 

that  

¬𝐹𝜇
𝐶(¬𝛼) = 𝑈 − (¬𝐹𝜇(¬𝛼)) 

   = 𝑈 − 𝐹𝜇(1 − 𝛼) 

= 𝑈 − 𝜇(1−𝛼) 

= 𝑈 − {𝑢 ∈ 𝑈|𝜇(𝑢) ≥ 1 − 𝛼} 

= {𝑢 ∈ 𝑈|𝜇(𝑢) < 1 − 𝛼}. 
On the other hand, based on Definition 3, Proposition 1, and Proposition 4, it is obtained that 

𝐹𝜇𝐶(𝛼)  = (𝜇𝐶)𝛼 

= {𝑢 ∈ 𝑈|𝜇𝐶(𝑢) ≥ 𝛼} 

= {𝑢 ∈ 𝑈|1 − 𝜇(𝑢) ≥ 𝛼} 

= {𝑢 ∈ 𝑈|𝜇(𝑢) ≤ 1 − 𝛼}. 
Because 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈, it is obtained that 

𝐹𝜇𝐶(𝛼) = {𝑢 ∈ 𝑈|𝜇(𝑢) < 1 − 𝛼}. 

Thus, it is proven that if 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈 then ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. ∎ 

Example 4. Let 𝜇 = {(𝑢1, 0.5), (𝑢2, 0.7), (𝑢3, 0.2), (𝑢4, 1), (𝑢5, 0.9), (𝑢6, 0)}. 

Therefore, (¬𝐹𝜇
𝐶 , ¬𝐴) = {

(¬0, {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6}), (¬0.2, {𝑢1, 𝑢2, 𝑢3, 𝑢6}), (¬0.5, {𝑢3, 𝑢6}),
(¬0.7, {𝑢3, 𝑢6}), (¬0.9, {𝑢6}), (¬1, ∅)

}. 

On the other hand, because 𝜇(𝑢) ≠ 1 − 𝛼 for all 𝑢 ∈ 𝑈, then it is obtained that 

(𝐹𝜇𝐶 , 𝐴) = {
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢5, 𝑢6}), (0.2, {𝑢1, 𝑢2, 𝑢3, 𝑢6}), (0.5, {𝑢3, 𝑢6}),

(0.7, {𝑢3, 𝑢6}), (0.9, {𝑢6}), (1, ∅)
}. 

Consequently, ¬𝐹𝜇
𝐶(¬𝛼) = 𝐹𝜇𝐶(𝛼) for all 𝛼 ∈ 𝐴. 

3.3 Operations on Soft Sets Formed from Fuzzy Subsets 

The operations presented in this section consisted of intersection, union, OR, and AND operations, 

which apply to soft sets formed from fuzzy subsets. These operations are presented in the following 

proposition. 

Proposition 7. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐻𝝁∩𝜈 , 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵) if 𝐼𝑚(𝜇) ⊆ 𝐼𝑚(𝜈) or 𝐼𝑚(𝜈) ⊆ 𝐼𝑚(𝜇) where 

𝐶 = 𝐼𝑚(𝜇 ∩ 𝜈).  

Proof. Based on Definition 7, To prove that (𝐻𝝁∩𝜈 , 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵), it must be proven that                      

𝐶 ⊆ 𝐴 ∩ 𝐵 and 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐶. 

(i) Let 𝑥 be any element of Im(𝜇 ∩ 𝜈) so there exists 𝑢 ∈ 𝑈 such that 𝑥 = (𝜇 ∩ 𝜈)(𝑢), then based on 

Definition 4, it is obtained that 𝑥 = min{𝜇(𝑢), 𝜈(𝑢)}. 

1) Assuming that 𝜇(𝑢) ≤ 𝜈(𝑢), it is obtained that 𝑥 = 𝜇(𝑢) which means 𝑥 ∈ Im(𝜇). Next, as     

Im(𝜇) ⊆ Im(𝜈) then 𝑥 ∈ Im(𝜈). Hence, it is obtained that 𝑥 ∈ Im(𝜇) and 𝑥 ∈ Im(𝜈) in other words 

𝑥 ∈ Im(𝜇) ∩ Im(𝜈). Consequently, Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈). 

2) Assuming that 𝜈(𝑢) ≤ 𝜇(𝑢), it is obtained that 𝑥 = 𝜈(𝑢) which means 𝑥 ∈ Im(𝜈).  Next, as 

Im(𝜈) ⊆ Im(𝜇) then 𝑥 ∈ Im(𝜇). Hence, it is obtained that 𝑥 ∈ Im(𝜇) and 𝑥 ∈ Im(𝜈) in other words 

𝑥 ∈ Im(𝜇) ∩ Im(𝜈). Consequently, Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈). 

From 1) and 2), it is obtained that Im(𝜇 ∩ 𝜈) ⊆ Im(𝜇) ∩ Im(𝜈), so based on Proposition 1, it is proven 

that 𝐶 ⊆ 𝐴 ∩ 𝐵. 



BAREKENG: J. Math. & App., vol. 17(3), pp. 1473- 1482, September, 2023.     1479 

 

(ii) Let 𝛾 be any element of 𝐶. Based on Theorem 2, Definition 11, and Proposition 1, it is obtained that  

𝐻𝜇∩𝜈(𝛾) = (𝜇 ∩ 𝜈)𝛾  

= 𝜇𝛾 ∩ 𝜈𝛾  

= 𝐹𝜇(𝛾) ∩ 𝐺𝜈(𝛾)  

= (𝐹𝜇 ∩ 𝐺𝜈)(𝛾)  

It is obtained that 𝐻𝝁∩𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Thus, it is proven that 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 

𝛾 ∈ 𝐶. 

From (i) and (ii), it is obtained that (𝐻𝝁∩𝜈 , 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵).∎ 

Example 5. Let 𝜇 = {(𝑢1, 0.8), (𝑢2, 0.1), (𝑢3, 0.7), (𝑢4, 0.4), (𝑢5, 0.7)} and 𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.9), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.8)}. Therefore, Im(𝜇) ⊆ Im(𝜈) and 𝐴 ∩ 𝐵 =
{0.1, 0.4, 0.7, 0.8}. On the other hand, based on Definition 4, it is obtained that 𝜇 ∩ 𝜈 =
{(𝑢1, 0.7), (𝑢2, 0.1), (𝑢3, 0.1), (𝑢4, 0.4), (𝑢5, 0.7)} such that 𝐶 = 𝐼𝑚(𝜇 ∩ 𝜈) = {0.1, 0.4, 0.7}. Thus, 𝐶 ⊆ 𝐴 ∩

𝐵. Furthermore, it is obtained that (𝐻𝝁∩𝜈 , 𝐶) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢4, 𝑢5}),

 (0.7, {𝑢1, 𝑢5})
} and 

((𝐹𝜇 ∩ 𝐺𝜈), 𝐶) = {
(0.1, {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}), (0.4, {𝑢1, 𝑢4, 𝑢5}),

 (0.7, {𝑢1, 𝑢5})
}. 

It is obtained that 𝐻𝝁∩𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Consequently, 𝐻𝝁∩𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐶. 

Thus, (𝐻𝝁∩𝜈 , 𝐶) ⊆̃ (𝐹𝜇 , 𝐴) ∩̃ (𝐺𝜈 , 𝐵). 

Proposition 8. Let (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵) be two soft sets formed from fuzzy subsets 𝜇 and 𝜈, respectively, over 

a universal set 𝑈. The soft set (𝐼𝝁∪𝜈 , 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈 , 𝐵) if 𝜇𝛾 ⊆ 𝜈𝛾 when 𝛾 ∈ 𝐵 − 𝐴 and 𝜈𝛾 ⊆ 𝜇𝛾 when 

𝛾 ∈ 𝐴 − 𝐵 where 𝐷 = 𝐼𝑚(𝜇 ∪ 𝜈). 

Proof. Based on Definition 7, to prove that (𝐼𝝁∪𝜈 , 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈 , 𝐵), it must be proven that 𝐷 ⊆ 𝐴 ∪ 𝐵 

and 𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∪ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷.  

(i) Let 𝑥 be any element of Im(𝜇 ∪ 𝜈) so there exists 𝑢 ∈ 𝑈 such that 𝑥 = (𝜇 ∪ 𝜈)(𝑢), then based on 

Definition 4, it is obtained that 𝑥 = max{𝜇(𝑢), 𝜈(𝑢)}. 

1) Assuming that 𝜇(𝑢) ≥ 𝜈(𝑢), it is obtained that 𝑥 = 𝜇(𝑢) which means 𝑥 ∈ Im(𝜇).  

2) Assuming that 𝜈(𝑢) ≥ 𝜇(𝑢), it is obtained that 𝑥 = 𝜈(𝑢) which means 𝑥 ∈ Im(𝜈).  

From 1) and 2), it is obtained that 𝑥 ∈ Im(𝜇) or 𝑥 ∈ Im(𝜈) in other words 𝑥 ∈ Im(𝜇) ∪ Im(𝜈). 

Consequently, Im(𝜇 ∪ 𝜈) ⊆ Im(𝜇) ∪ Im(𝜈), so based on Proposition 1, it is proven that 𝐷 ⊆ 𝐴 ∪ 𝐵. 

(ii) Based on Definition 12, for all 𝛾 ∈ 𝐷 holds 

(𝐹𝜇 ∪ 𝐺𝜈)(𝛾) = {

                    𝐹𝜇(𝛾),                  𝛾 ∈ 𝐴 − 𝐵     

                     𝐺𝜈(𝛾),                  𝛾 ∈ 𝐵 − 𝐴      

𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾),                  𝛾 ∈ 𝐴 ∩ 𝐵.

 

1) If 𝛾 ∈ 𝐴 − 𝐵 

Let 𝛾 be any element of 𝐴 − 𝐵 and if 𝛾 ∈ 𝐴 − 𝐵 then 𝜈𝛾 ⊆ 𝜇𝛾. Then, based on Theorem 2 and 

Proposition 1, it is obtained that  

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝜇𝛾 

= 𝐹𝜇(𝛾) 

              It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐹𝜇(𝛾) when 𝛾 ∈ 𝐴 − 𝐵. 

2) If 𝛾 ∈ 𝐵 − 𝐴 

Let 𝛾 be any element of 𝐵 − 𝐴 and if 𝛾 ∈ 𝐵 − 𝐴 then 𝜇𝛾 ⊆  𝜈𝛾. Then, based on Theorem 2 and 

Proposition 1, it is obtained that 

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝜈𝛾 

= 𝐺𝜈(𝛾) 
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              It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐺𝜈(𝛾) when 𝛾 ∈ 𝐵 − 𝐴. 

3) If 𝛾 ∈ 𝐴 ∩ 𝐵 

 Let 𝛾 be any element of 𝐴 ∩ 𝐵. Based on Theorem 2 and Proposition 1, it is obtained that 

𝐼𝜇∪𝜈(𝛾) = (𝜇 ∪ 𝜈)𝛾 

= 𝜇𝛾 ∪ 𝜈𝛾 

= 𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾) 

 It is obtained that 𝐼𝜇∪𝜈(𝛾) = 𝐹𝜇(𝛾) ∪ 𝐺𝜈(𝛾) when 𝛾 ∈ 𝐴 ∩ 𝐵. 

From 1), 2), and 3), it is obtained that 𝐼𝝁∪𝜈(𝛾) = (𝐹𝜇 ∩ 𝐺𝜈)(𝛾). Thus, it is proven that                          

𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∩ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷. 

From (i) and (ii), it is obtained that (𝐼𝝁∪𝜈 , 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈 , 𝐵). ∎ 

Example 6. Let 𝜇 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.4), (𝑢4, 0.9)} and 𝜈 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.6), (𝑢4, 0.8)}. 
Therefore, 𝐴 ∪ 𝐵 = {0, 0.2, 0.4, 0.6, 0.8, 0.9}. On the other hand, based on Definition 4, it is obtained that 

𝜇 ∪ 𝜈 = {(𝑢1, 0), (𝑢2, 0.2), (𝑢3, 0.6), (𝑢4, 0.9)} such that 𝐷 = 𝐼𝑚(𝜇 ∪ 𝜈) = {0, 0.2, 0.6, 0.9}. Thus, 𝐷 ⊆

𝐴 ∪ 𝐵. Next, it is obtained that (𝐼𝝁∪𝜈 , 𝐷) = {
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢4}), (0.2, {𝑢2, 𝑢3, 𝑢4}),

(0.6, {𝑢3, 𝑢4}), (0.9, {𝑢4})
} and ((𝐹𝜇 ∪ 𝐺𝜈), 𝐷) =

{
(0, {𝑢1, 𝑢2, 𝑢3, 𝑢4}), (0.2, {𝑢2, 𝑢3, 𝑢4}),

(0.6, {𝑢3, 𝑢4}), (0.9, {𝑢4})
}. 

It is obtained that 𝜈𝛾 ⊆ 𝜇𝛾 when 𝛾 ∈ 𝐴 − 𝐵 and 𝜇𝛾 ⊆ 𝜈𝛾 when 𝛾 ∈ 𝐵 − 𝐴. Furthermore, it is obtained that 

𝐼𝝁∪𝜈(𝛾) = (𝐹𝜇 ∪ 𝐺𝜈)(𝛾). Consequently, 𝐼𝝁∪𝜈(𝛾) ⊆ (𝐹𝜇 ∪ 𝐺𝜈)(𝛾) for all 𝛾 ∈ 𝐷. Thus, it is obtained that 

(𝐼𝝁∪𝜈 , 𝐷) ⊆̃ (𝐹𝜇 , 𝐴) ∪̃ (𝐺𝜈 , 𝐵). 

Proposition 9. If (𝐹𝜇, 𝐴) and (𝐺𝜈 , 𝐵) are two soft set respectively formed from fuzzy subsets 𝜇 and 𝜈 over the 

universal set 𝑈 then (𝐻, 𝐶) is a soft set formed from the OR operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵)  defined as  

𝐻: 𝐶 → 𝑃(𝑈) 

where 𝐶 = 𝐴 × 𝐵 and 𝐻(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Furthermore, if (𝐼(𝜇∪𝜈), 𝐷) is a soft 

set formed from the union operation on fuzzy subsets 𝜇 and 𝜈 then 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)) with the 

sufficient condition 𝛾 ≥ 𝑚𝑎𝑥{𝛼, 𝛽} for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

Proof. Let 𝑢 be any element of (𝜇 ∪ 𝜈)𝛾, it means 𝑢 ∈ {𝑢 ∈ 𝑈|(𝜇 ∪ 𝜈) ≥ 𝛾}, then based on the definition of 

(𝜇 ∪ 𝜈)(𝑢) it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈| max{𝜇(𝑢), 𝜈(𝑢)} ≥ 𝛾}. 

a) Assuming that 𝜇(𝑢) ≥ 𝜈(𝑢), it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|𝜇(𝑢) ≥ 𝛾}, so that 𝜇(𝑢) ≥ 𝛾. In other words, 

𝑢 ∈ 𝜇𝛾.  

b) Assuming that 𝜈(𝑢) ≥ 𝜇(𝑢), it is obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|𝜈(𝑢) ≥ 𝛾}, so that 𝜈(𝑢) ≥ 𝛾. In other words, 

𝑢 ∈ 𝜈𝛾.  

From a) and b), it is obtained that 𝑢 ∈ 𝜇𝛾 or 𝑢 ∈ 𝜈𝛾, so that 𝑢 ∈ 𝜇𝛾 ∪ 𝜈𝛾. Furthermore, because 𝛾 ≥

max{𝛼, 𝛽} then 𝛾 ≥ 𝛼 and 𝛾 ≥ 𝛽, so that 𝑢 ∈ 𝜇𝛼 ∪ 𝜈𝛽. In other words,  (𝜇 ∪ 𝜈)𝛾 ⊆ 𝜇𝛼 ∪ 𝜈𝛽. Thus, it is 

proven that 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)).■ 

Hence, it is obtained that the definition of OR operation of (𝐹𝜇, 𝐴) and (𝐺𝜈 , 𝐵) is  

(𝐹𝝁, 𝐴) ∨̃ (𝐺𝜈 , 𝐵) = (𝐻, 𝐴 × 𝐵), 

where 𝐻(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. 

Example 7. Let 𝜇 = {(𝑢1, 0.2), (𝑢2, 0.8), (𝑢3, 0.5)} and 𝜈 = {(𝑢1, 0.8), (𝑢2, 0.3), (𝑢3, 0.2)}. 

It is obtained that 

(𝐹𝜇, 𝐴) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.5, {𝑢2, 𝑢3}), (0.8, {𝑢2})}, 

(𝐺𝜈 , 𝐵) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.3, {𝑢1, 𝑢2}), (0.8, {𝑢1})}, 

𝐷 = Im (𝜇 ∪ 𝜈) = {0.5, 0.8}, and (𝐼(𝜇∪𝜈), 𝐷) = {(0.5, {𝑢1, 𝑢2, 𝑢3}), (0.8, {𝑢1, 𝑢2})}  

Thus, when 𝛾 ≥ max{𝛼, 𝛽}, obtained that 𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)) for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷.  

Proposition 10. If (𝐹𝜇, 𝐴) and (𝐺𝜈 , 𝐵) are two soft sets respectively formed from fuzzy subsets 𝜇 and 𝜈 over 

the universal set 𝑈 then (𝐽, 𝐶) is a soft set formed from the AND operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵)  defined as  

𝐽: 𝐶 → 𝑃(𝑈) 
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where 𝐶 = 𝐴 × 𝐵 and 𝐽(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Furthermore, if (𝐾(𝜇∩𝜈), 𝐷) is a soft 

set formed from the intersection operation on fuzzy subsets 𝜇 and 𝜈 then (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾) with 

the sufficient condition 𝛾 ≤ 𝑚𝑖𝑛{𝛼, 𝛽} for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

Proof. Let 𝑢 be any element of 𝜇𝛼 ∩ 𝜈𝛽, it means 𝑢 ∈ 𝜇𝛼 and 𝑢 ∈ 𝜈𝛽. Furthermore, because 𝛾 ≤ min{𝛼, 𝛽}, 

it is obtained that 𝛾 ≤ 𝛼 and 𝛾 ≤ 𝛽, so that 𝑢 ∈ 𝜇𝛾 and 𝑢 ∈ 𝜈𝛾. Then based on Definition 5, 𝜇(𝑢) ≥ 𝛾 and 

𝜈(𝑢) ≥ 𝛾 are obtained, thus 𝑢 ∈ {𝑢 ∈ 𝑈| max{𝜇(𝑢), 𝜈(𝑢)} ≥ 𝛾}, based on the definition of (𝜇 ∩ 𝜈)(𝑢), it is 

obtained that 𝑢 ∈ {𝑢 ∈ 𝑈|(𝜇 ∩ 𝜈)(𝑢) ≥ 𝛾}, so that 𝑢 ∈ (𝜇 ∩ 𝜈)𝛾. In other words, 𝜇𝛼 ∩ 𝜈𝛽 ⊆ (𝜇 ∩ 𝜈)𝛾. Thus, 

it is proven that (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾).■ 

Hence, it is obtained that the definition of AND operation of (𝐹𝜇 , 𝐴) and (𝐺𝜈 , 𝐵) is  

(𝐹𝝁, 𝐴) ∧̃ (𝐺𝜈 , 𝐵) = (𝐽, 𝐴 × 𝐵), 

where 𝐽(𝛼, 𝛽) = 𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵. 

Example 8. Based on Example 7, It is obtained (𝐹𝜇 , 𝐴), (𝐺𝜈 , 𝐵), 𝐷 = Im (𝜇 ∩ 𝜈) = {0.2, 0.3}, and 

(𝐾(𝜇∩𝜈), 𝐷) = {(0.2, {𝑢1, 𝑢2, 𝑢3}), (0.3, {𝑢2})}  

Thus, when 𝛾 ≤ min{𝛼, 𝛽}, obtained that (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆ 𝐾(𝜇∩𝜈)(𝛾) for all 𝛼 ∈ 𝐴, 𝛽 ∈ 𝐵, and 𝛾 ∈ 𝐷. 

4. CONCLUSIONS 

Based on the result and discussion, it is obtained that every fuzzy subset can be formed as a soft set, 

with the parameter set being the image of that fuzzy subset. The sufficient condition for a soft set formed 

from the fuzzy subset 𝜇 is a subset of the soft set formed from the fuzzy subset 𝜈 over the same universal set 

if 𝜇 is a fuzzy subsubset of 𝜈. Furthermore, the complement of a soft set formed from a fuzzy subset is also 

a soft set formed from a fuzzy subset. If (𝐾(𝜇∩𝜈), 𝐼𝑚(𝜇 ∩ 𝜈)) and (𝐼(𝜇∪𝜈), 𝐼𝑚(𝜇 ∪ 𝜈)) are soft sets formed 

from the intersection and union operations on fuzzy subsets 𝜇 and 𝜈, respectively, then (𝐹𝜇(𝛼) ∩ 𝐺𝜈(𝛽)) ⊆

𝐾(𝜇∩𝜈)(𝛾) with the sufficient condition 𝛾 ≤ min{𝛼, 𝛽} for all 𝛼 ∈ 𝐼𝑚(𝜇), 𝛽 ∈ 𝐼𝑚(𝜈), and 𝛾 ∈ 𝐼𝑚(𝜇 ∩ 𝜈). If 

𝛾 ≥ max{𝛼, 𝛽} for all 𝛼 ∈ 𝐼𝑚(𝜇), 𝛽 ∈ 𝐼𝑚(𝜈), and 𝛾 ∈ 𝐼𝑚(𝜇 ∪ 𝜈) then  𝐼(𝜇∪𝜈)(𝛾) ⊆ (𝐹𝜇(𝛼) ∪ 𝐺𝜈(𝛽)). 
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