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Abstract. In this work we study representations of finite abelian groups over module
over a principal ideal domain. Let (G be a finite abelian group and M a module over
a principal ideal domain R. A representation of G over M is a group 1101'11?)1‘1311131‘11
from G to the automorphisms on M over K. We use the fact that this M can be

represented as an R[(G]-module to generalize Maschke Theorem and Schur’s Lemma.
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1. Introduction

g}t G be a finite abelian group and V a vector space over a field F'. A rep-
resentation of G over V is a group homomorphism p : G — Link(V), where
Linx(V) is a group of all isomorphisms on V. For some elementary notions of
representation of a group over a vector space we refer to Steinberg [10]. Some of
the important results in representation theory are Maschke Theorem and Schur’s
Lemma, which are applied to look the properties of character. The notion of
character is well known the MacWilliams Identity. Some elementary properties
of linear codes and MacWilliams Identity can be refer to Ling [6] and Pellikaan
et al. [9]. The studies of linear codes into more general situation have been done
by some authors. Wood [11] has generalized codes as submodules of modules
over Frobenius rings and has defined the dual codes.

The weight distributions and MacWilliams Identity of linear codes over finite
Frobenius rings have been investigated by Byrne [3]. Then Greferath et al. [8]
have continned to observe MacWilliams Identity for linear codes over Frobenius
modules and quasi-Frobenius modules. One of the results of Gluesing-Luerssen
[7] is for any finite Frobenius ring, the weight homogeneous denumerator can
be described based on its socle and radical. Moreover, Adkins and Weintraub
in [2] and James and Liebeck in [5] used module theory approach to analyse
representations of groups over vector spaces. If there exists a representation of
finite group G over a vector space over a field F, then V can be represented as
an F[G]-module.

In this work we study the representation of finite abelian groups on a free
module over a principal ideal domain with finite dimension. . (3 be a finite
abelian group and M a module over a principal ideal domain K. A representation
of G over M is a group homomorphism p : G — Autr(M), where Autr(M) is
a group of automorphims on M. If there exists a representation of finite group
G over a module over a ring R, then M can be represented as an R[G]-module.
The main results of our work are the generalization of Maschke Theorem and
Schur’s Lemma.

2. Main Result

3
Throughout this paper the ring R is a principal ideal domain and the module
M is a free left R-module with finite dimension.

Definition 2.1. Let G bd@ finite abelian group and M an R-module. A repre-
sentation of G over M 15 a group homomorphism p : G — Autr(M), where
Autp(M) is the set of the automorphisms on M.
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We give the example of representation of the permmtation group S5 over the
Z-module Z* as following.

Ezample 2.2.  We consider the permutation group S; and define p: §3 —
Aut(Z3) as following: ¥(a1,as,a3) € Z3,

g (1) (12) (13) (23)

pellar,az,a3)) | (a1,az,a3) (a2,01,03) (as,a2,a1) (a1,03,02)

g (123) (321)

py((alr{IQra:‘})) (az,a1,a2) (ag,asz,a)

The proof that p is a gronp homomorphism is trivial.
Let G be a finite group. We recall the following group ring denoted by
RG] = {3 ,cqa99 | ag € R, g € G} by operations addition and multiplication

as follow:
Do agg+ D beg =) (ag +by)g:

geG geG geG
(Z aqg)(z bhh') = Z( Z t’lybh)k.
geG heG ke gh=k

3
Moreover, if there exists a representation of finite group G over an R-module

M, then M can be represented as an R|[G]-module. Let G be a finite group. If
p is a representation of G over an R-module M, where R is a commutative ring
with unit, then M is an R[G]-module by the following scalar multiplication:

(Z agg)m = Z t’lypy(m),

geG geG

for all 3, s agg € R[G] and m € M. Conversely, gﬂ'f is an R[G]-module and
B is a basis of M, then the function u : g — [g]s, where [g]s is the matrix of the
endomorphism of m +— mg, for all g € G, is a representation of G in M. For a
detail explanation of this notion, we refer to Th@gem 4.4 of [5].

Based on the discussion above, we r.'onr.'ludeg
an R[G]-homomorphism if and only if

at a mapping 7: M — N is

(1) T is an R-homomorphism;

(2) T(g.m)=g.(T(m)) for all g € G.

Definition 2.3. Let G be a finit@belian group, M an R-module and p : G —
Autr(M) arepresentation of G. An R-submodule K of M is called a G-invariant
submodule if p,(K) C K for any g € G.
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From Definition 2.3 it is understood that every G-invariant submodule K of
M @gan R|G]-submodule of M.

g nonzero R-module M is called a simple or irreducible module if it has only
the trivial submodules. An R-module M is decoraosable if M = Ny& Ny, where
N1, Ny are nontrivial submodules of M. An R-module M is called completely
reducible if M can be represented as finite direct sum of simple submodules.

Definition 2.4. Let p: G — Autr(M) be a representation of finite group GG in a
module M over R.

(1) p is said to be irreducible if M is irreducible as an R[G]-module.

(2) p is said to be decomposable if M = Ny & Ny where N1, Ny are G-invarian
submodules. Moreover, if p is decomposable, then M is decomposable to
R|G]-submodules Ny and No.

(3) p is said to be completely reducible if M = N1& No& ... & Ny, where N; is a
G-invariant submodule which is irreducible for all i = 1,2, ..., k. Moreover,
if p is completely reducible, then M = Ny & Na & ... & Ny, where N; is an
R|G|-submodule which is irreducible for all i =1,2,.. k.

We give now a sufficient condition for an R[GJ-submodule of an R[G]-module
to be a direct summand.

Proposition 2. et R be a principal ideal domain, G a finite abelian commuta-
tive group and M be an R— module. If N is a nontrivial R|G|— submedule
of M with |G| is invertible in R, then there is a nontrivial R|G|— submodule K
of M such that

M=NaK.

Proof. Suppose that N is an R[G]— @bmodule of an R[G]— module M. Because
M is free module over PID R, so there is a submodule Ky of M, such that
M = N & Ky. For any m € M, we have) = n + k for a unique na N and
k€ Ky. We define v : M — M with ¥/(m) = n for any m € M. It is clear
that Im ¢ = N and Ker i = K. We want to modity the projection ¢’ to get an
R|G]— homomorphism which image is N. Define ¢ : M — M as for any m € M:

. 1 - 1 -
p(m) = ] > ggTH(m) = i@l > gv(g im)
g gel g geld
Because |G| is invertible in R, g~'m € M and 1/ is projection, so /(g 'm) €
N. It means I'm ¢ C N.
Claim 1. Function ¢ is an R[G]— module homomorphism.
It is easy to prove ¢(m +n) = ¢(m) + ¢(n) for any m,n € M. For » € G,
we have i(zm) = m)(m). As g is run over all element in G, so does h =
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-1

r g, (h

“l=g7lr),

1
¢(xm) = al > ggHam)

geG
1 . 1 iy
= ar th_-fl(g Yom) = I Z zh(h™'m)
geG hedd

1
= rﬁ Z haph™ Y (m) = zd(m).
T hea

Claim 2. ¢° = o.
For any g € G and n € N, we have gn € N and i/(gn) = gn, and so

1 , 1 ,
0(n) = 121 2 9% () = 7 3 (9w (g™ ()
geld

geld
1 _ 1 1, .
= ?Z(gg ln) = ? Zﬁ.: ?|(1|?’T:ﬁ
Gl 22 Gl 22"~ Tl

It means Im ¢ 2 N and moreover Im ¢ = N. For any m € M, ¢(m) € N, so
d(p(m)) = ¢(m). Let K = Ker ¢. Then K is R[G]|— submodule and because ¢
projection M = N & K. [ ]

Proposition 2.6. (Generalized Maschke Theorem) Let R be a principal ideal
domain, M a free R-module with finite dimension and G an abeliff@commut ative
group. Let p: G — Aut p(M) be a representation of G over M. If |G| is invertible
in R, then p is completely reducible.

gmof. We use the mathematical induction to the dimension of the module to
prove this proposition. If dim(M) = 1, then p is irreducible. Now we assume
that the assertion is true for dim(M) < n. We show that if dim(M) =n+ 1,
then p is completely reducible.

If p is irreducible, then we prove the proposition. If p is reducible, then base
on Proposition 2.5 M = Ni & Ny where Ny, No are R[G]-submodules of M.
Since R is a principal ideal domain, dim(N;), dim(N,) < dim(M) = n + 1. By
assumption Ny = Uy & Uz & ... & Up and No = Vi & Va & .. & Vi, where U, V)
are irreducible for all i = 1,2, ...,r and j = 1,2, ..., s. Hence we have

M=Ualo. ol aVaVho..oV..

So p is completely reducible. (]

Et G be a finite abelian group, R a principal ideal domain and M, N R-
modules. We give p: G — A@(M ) and ¢: G — Autg(N) two representations
of G over M. We denote py: M — M and ¢,: N — N as module isomorphisms
for any g € G.
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For any module homomorp T:M—= N, Tp,: M = Nand p,7: M —
N are module homomorphisms, but it is not necessary T'p, = ©,T. We give the
following example to show this fact.

Ezample 2.7. We consider Example 2.2. Moreover, we also consider the follow-
ing homomorphism ¢: S5 — Autz(Z?) which is defined as p, = id, the identity
on 7%, for all g € S3. It is easy to prove that p and ¢ are representations of
S with degree 3 and 2. Let T': 73 = 72 be a Z-module homomorphism with
definition

T(t’l]__. {12,{13) = ({1]__. 2 + {13).

Since for (1 2) € S5 we have

Tpi pylar, az,a3) = (az, a1 + as)
w1 T (a1, a2,a3) = (a1, a2 + as)
for ¥(a1,a2,a3) € Z*, we conclude Tpgy 2) # @ o7, Thus there exists g € S
such that T'p, # o, T.
Furthermore, we give the following definition.

Definition 2.8. Let G be a finite abelian group, R a principal ideal domain, M,
N R-modules. Let p: G — Autfa-f) and p: G — Autr(N) be two representa-
tions of G with finite degree. A module homomorphism T: M — N is called a
morphism from p to @, if T satisfies Tpy = @, T for all g € G.

Now we give the example of morphism between two representations.

Ezample 2.9. Recall two representations p and  in Example 2.7. Now we
define an invertible Z-module homomorphism T': Z* — Z? where T(ay, az,a3) =
(—as,ay, —ay), for all (ay,as,a3) € Z3. We also define wg = prT_l for all
g € Sy, and we obtain

g (1) (12) (13)

py((alraba:‘})) (a1,az,a3) (@, —az,—az) (as,az,a;)

g (2 3) (123) (321)

pgllar,az,as)) | (—az, —a1,as) (—t’lu,—t’l:;,y (ag, —a1, —az)
e

It can be proved that Tp, = o, T for all g € S5. Hence T is a morphism from

p to .

We consider again the notions in Definition 2.8. The set of all morphisms
from p to p is denotegj}' Homeg (M, N) and it is understood that Homeg (p, ¢) C
Hompg (M, N). Since K is a principal ideal domain, Hompg (M, V) is an R-module.
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Proposition 2.10. Let M, N be R-modules, p : G — Autg(M) and ¢ : G —
Autgp(N) be representations of finite abelian group G. Then Homeg(p, @) is a
submodule of Homg (M, N').

Proof. The zero homomorphism is always contained in Homg(p, @), so it is a
non-empty set. Take any 17,7, in Homg(p, @), r,s in R and g in G. Then we
have

(rTy + sTa)pg = 1T1pg + sTopg = 1oy T1 + spgTy = g (rTh + sT3).

Hence Homg/(p, @) 18 a submodule of Hompg (M, N). (]

Definition 2.11. Two representations of G, p : G — Autg(M) and p : G —
Autg(N), are said to be equivalent, denoted by p ~ o, if there exists an R-
isomorphism T : M — N such that Tpy = 0,1 for all g € G.

It is clear from Definition 2.11 that the following proposition holds.

Proposition 2.12. Let p : G — Autg(M) and ¢ : G — Autgp(N) be repre-
sentations of finite abelian group G. Then Ker(T') and Im(T) are G-invariant
submodules.

Proof. Take any = € Ker(T') and g € G. Then (Tg))(z) = (¢T)(z) = 0 and we
conclude that pg)(z) € Ker(T). Now take any y € Im(7"). Then there is m € M
such that T'(m) = y. Moreover, p,(y) = (p,T)(m) = (T, )(m) € Im(T) . ]

Now we give a generalized Schur's Lemma as following.

Proposition 2.? (Generalized Schur's Lemma) Let p: G — Autr(M) and ¢ :
G — Autp(N) be representations of finite abelian group G and T € Homg/(p, ©).
Then T =0 or T is invertible. Moreover,

(i) if p o @, thenflome(p, ) = 0.
(it) if p = @, and K is the fractional field of R, K' is the algebraic extension
field of K| then T = A with A € K'.

Proofglit T = 0, then it is clear. Now we assume T" # (). Based on Proposition
2.12, Ker(T') is G-invariant, so either Ker(T) = M or Ker(T) = 0. But 7" # 0,
Pnce Ker(T') = 0,1i.e. T is a monomorphism. Again we apply Proposition 2.12,

m(T) is?—invariant, so either Im(T) = M or Im(T") = 0. But T # 0, hence
Im(T) = M, i.e. T is an epimorphism. We conclude that 7" is invertible.

For (i), we suppose that Homg(p, ) # 0, say there is a nonzero homomor-
phism T" € Homg(p,w). But it will imply T is invertible, so we obtain that
p ~ , a contradiction.

For (ii), let A € K’ be eigenvalue of T. Consider that R is a principle ideal
domain. Then by Proposition 16.3.14 and Definition of Dedekind Domain in
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[4] R is integrally closed in K. Thus if A € ? then A € R. By definition of
an eigenvalue A/ T is not invertible. Consider that I omg(p,p). By
Proposition 2.10, I is a submodule of Homp (M, M)) and Al — T belongs to
Homg(p, p). Since all non zero element in Hma;(p, p) is invertible by the first
paragraph of the proof, hence A\I =T = 0 < T = Al. Furthermore if A ¢ K
then T = AI with A € K'. =

Remark 2.14. If p : G — Autg(M) and ¢ : G — Autg(N) are equivalent
irreducible representations of finite abelian group @, then

dim(Homg(p, ) = 1.

Now we Qescribe the irreducible representation of an abelian group.

Corollary 2.15. Let G be an abelian group. Then any irreducible representation
of G has degree one.

Proof. Let p : G — Autgp(M) be an irreducible representation, ?E G and
setting T = p;,. We obtain for all g € G that

Troy = PhPg = Phg = Pgh = PgPh-

So we have py, € Homg(p, p). Consequently, nsing Proposition 2.13 we have
prn = apd for some scalar a; € K (this o is dependence on h). Since R is
integrally closed in K, we conclude « € R. Let m be a non-zexnelement in M
and k € R. Then py(km) = aplkm = apkm € Rm. Thus Bm 18 a G-invariant
submodule, as h was arbitrary. We conclude that M = Rm by irreducibility and
dim(M) =1. (]

Acknowledgement. Authors thank to the reviewers for comments and sugges-
tions.

References

[1] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules,
Algebra Collogium 19 (1) (2012) 1109-1116.

[2] W.A. Adkins and S.H. Weintraub, Algebra an Approach via Module Theory,
Springer-Verlag, New York, 1992,

[3] E. Byrne, On the weight distribution of codes over finite rings, Advances in Math-
ematics of Communications 5 (2011) (2) 395-406. doi: 10.3934/amec.2011.5.395

[4] D.S. Dummit and R.M. Foote, Abstract Algebra, 2nd Ed., John Wiley & Sons.
Inc., New York, 2002,

[5] G. James and M. Liebeck, Representations and Characters of Groups, 2nd Ed.,
Cambridge University Press, Cambridge, 2001.

[6] S. Ling and C. Xing, Coding Theory A First Course, Cambridge University Press,
Cambridge, 2004.




A Module Theory Approach on Generalization 81

[7]

H. Gluesing-Luerssen, The homogeneous weight partition and its character-
theoretic, Dual. Des. Codes Cryptogr. T9 (2016) 47-61.

https:/ /doi.org,/10.1007 /s10623-015-0034-1.

M. Greferath, A. Nechaev, R. Wisbauer, Finite quasi-Frobenius modules and
linear codes, Journal of Algebra and its Applications 3 (3) (2004) 247-272.

R. Pellikaan, X.W. Wu, S. Bulygin, R. Jurrius, Error-Correcting Codes and Cryp-
tology Preliminary Version, Cambridge University Press, Cambridge, 2015.

B. Steinberg, Representation Theory of Finite Groups An Introductory Approach,
Springer Verlag, New York, 2012.

J.A. Wood, Extension theorems for linear codes over finite rings, In: Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, (Proceedings of 12th
International Symposium, AAECC-12, Toulouse, France, June 23-27, 1997), Ed.
by T. Mora and H. Mattson, LNCS 1255, Springer-Verlag, Berlin, 1997,




06_47(

ORIGINALITY REPORT

15, 12+ 206

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

epdf.pub

Internet Source

s

Na'imah Hijriati, Sri Wahyuni, Indah Emilia
Wijayanti. "Generalization of Schur's Lemma
in Ring Representations on Modules over a
Commutative Ring", European Journal of Pure
and Applied Mathematics, 2018

Publication

3%

core.ac.uk

Internet Source

3%

"Algebras, Rings and Modules", Springer
Science and Business Media LLC, 2005

Publication

2%

Constantin Nastasescu, Freddy Van
Oystaeyen. "Methods of Graded Rings",
Springer Science and Business Media LLC,
2004

Publication

2%

pefmath.etf.bg.ac.rs

Internet Source

2%




Exclude quotes On Exclude matches <1%

Exclude bibliography On



