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ProtTrans-Glutar: Incorporating
Features From Pre-trained
Transformer-Based Models for
Predicting Glutarylation Sites
Fatma Indriani1,2*, Kunti Robiatul Mahmudah3, Bedy Purnama4 and Kenji Satou5

1Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan, 2Department of Computer
Science, Lambung Mangkurat University, Banjarmasin, Indonesia, 3Department of Postgraduate of Mathematics Education,
Universitas Ahmad Dahlan, Yogyakarta, Indonesia, 4School of Computing, Telkom University, Bandung, Indonesia, 5Institute of
Science and Engineering, Kanazawa University, Kanazawa, Japan

Lysine glutarylation is a post-translational modification (PTM) that plays a regulatory
role in various physiological and biological processes. Identifying glutarylated peptides
using proteomic techniques is expensive and time-consuming. Therefore, developing
computational models and predictors can prove useful for rapid identification of
glutarylation. In this study, we propose a model called ProtTrans-Glutar to classify
a protein sequence into positive or negative glutarylation site by combining traditional
sequence-based features with features derived from a pre-trained transformer-based
protein model. The features of the model were constructed by combining several
feature sets, namely the distribution feature (from composition/transition/distribution
encoding), enhanced amino acid composition (EAAC), and features derived from the
ProtT5-XL-UniRef50 model. Combined with random under-sampling and XGBoost
classification method, our model obtained recall, specificity, and AUC scores of
0.7864, 0.6286, and 0.7075 respectively on an independent test set. The recall
and AUC scores were notably higher than those of the previous glutarylation
prediction models using the same dataset. This high recall score suggests that our
method has the potential to identify new glutarylation sites and facilitate further
research on the glutarylation process.

Keywords: lysine glutarylation, protein sequence, transformer-basedmodels, protein embedding,machine learning,
binary classification, imbalanced data classification, post-translation modification

1 INTRODUCTION

Similar to the epigenetic modification of histones and nucleic acids, the post-translational
modification (PTM) of amino acids dynamically changes the function of proteins and is actively
studied in the field of molecular biology. Among various kinds of PTMs, lysine glutarylation is
defined as an attachment of a glutaryl group to a lysine residue of a protein (Lee et al., 2014). This
modification was first detected via immunoblotting and mass spectrometry analysis and later
validated using chemical and biochemical methods. It is suggested that this PTMmay be a biomarker
of aging and cellular stress (Harmel and Fiedler, 2018). Dysregulation of glutarylation is related to
some metabolic diseases, including type 1 glutaric aciduria, diabetes, cancer, and neurodegenerative
diseases (Tan et al., 2014; Osborne et al., 2016; Carrico et al., 2018). Since the identification of
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glutarylated peptides using proteomics techniques is expensive
and time-consuming, it is important to investigate computational
models and predictors to rapidly identify glutarylation.

Based on a survey of previous research, various prediction
models have been proposed to distinguish glutarylation sites. The
earliest one, GlutPred (Ju and He, 2018), constructs features from
amino acid factors (AAF), binary encoding (BE), and the
composition of k-spaced amino acid pairs (CKSAAP). The
authors selected 300 features using the mRMR method. To
overcome the problem of imbalance in this dataset, a biased
version of support vector machine (SVM) was employed to build
the prediction model. Another predictor, iGlu-Lys (Xu et al.,
2018), investigated four different feature sets, physicochemical
properties (AAIndex), K-Space, Position-Special Amino Acid
Propensity (PSAAP), and Position-Specific Propensity Matrix
(PSPM), in conjunction with SVM classifier. The feature set
PSPM performed best in the 10-fold cross-validation and was
therefore applied to the model. iGlu-Lys performed better than
GlutPred in terms of accuracy and specificity scores. However,
their sensitivity scores were lower. The next model proposed,
MDDGlutar (Huang et al., 2019), divided the training set into six
subsets using maximal dependence decomposition (MDD).
Three feature sets were evaluated separately using SVM:
amino acid composition (AAC), amino acid pair composition
(AAPC), and CKSAAP. The best cross-validation score was the
AAC feature set. The results of independent testing yielded a
balanced score of 65.2% sensitivity and 79.3% specificity, but it
had lower specificity and accuracy than those of the
GlutPred model.

The next two predictors included the addition of new
glutarylated proteins from Escherichia coli and HeLa cells for
their training and test sets. RF-GlutarySite (Al-barakati et al.,
2019) utilizes features constructed from 14 feature sets, reduced
with XGBoost. The model’s reported performance for
independent testing was balanced, with 71.3% accuracy, 74.1%
sensitivity, and 68.5% specificity. However, it is interesting to note
that the test data was balanced by under-sampling, which did not
represent a real-world scenario. iGlu_Adaboost (Dou et al., 2021)
sought to fill this gap by using test data with no resampling. This
model utilizes features from 188D, enhanced amino acid
composition (EAAC), and CKSAAP. With the help of Chi2
feature selection, 37 features were selected to build the model
using SMOTE-Tomek re-sampling and the Adaboost classifier.
The test result had good performance for recall, specificity, and
accuracy metrics, but a lower Area Under the Curve (AUC) score
than that of previous models.

Although many models have been built to distinguish between
positive and negative glutarylation sites, the performance of these
methods remains limited. One challenge to this problem is
finding a set of features to represent the protein subsequence,
which enables a correct classification of glutarylation site. BERT
models (Devlin et al., 2019), and other transformer-based
language models from natural language processing (NLP)
research, show excellent performance for NLP tasks. These
language models, having been adapted to biological sequences
by treating them as sentences and then trained using large-scale

protein corpora (Elnaggar et al., 2021), also show promise for
various machine learning tasks in the bioinformatics domain.

Previous studies have investigated the use of pre-trained
language models from BERT and BERT-like models to show
its effectiveness as protein sequence representation for protein
classification. For example, Ho et al. (2021) proposed a new
approach to predict flavin adenine dinucleotide (FAD) binding
sites from transport proteins based on pre-training BERT,
position-specific scoring matrix profiles (PSSM), and an amino
acid index database (AAIndex). Their approach showed an
accuracy score of 85.14%, which is an improvement over the
scores of the previous methods. Another study (Shah et al., 2021)
extracted features using pre-trained BERTmodels to discriminate
between three families of glucose transporters. This method,
compared to two well-known feature extraction methods, AAC
and DPC, showed an improved performance of more than 4% in
average sensitivity and Matthews correlation coefficient (MCC).
In another study, Liu built a predictor for protein lysine glycation
sites using features extracted from pre-trained BERT models,
which showed improved performance in terms of accuracy and
AUC score compared to previous methods (Liu et al., 2022).
These studies demonstrate the suitability of utilizing BERT
models to improve various protein classification tasks.
Therefore, using embeddings from pre-trained BERT and
BERT-like models has the potential to build an improved
glutarylation prediction model.

In this study, we proposed a new prediction model to predict
glutarylation sites (Figure 1) by incorporating features extracted
from pre-trained protein models combined with features from
handcrafted sequence-based features. A public dataset provided
from Al-barakati et al. (2019) was used in this study. It was an
imbalanced dataset with 444 positive sites and 1906 negative sites,
and already separated into two sets for use in model building and
independent testing. First, various feature sets were extracted
from the dataset, consisting of two types of features. The first type
consists of seven classic sequence-based features, and the second
type consists of six embeddings from pre-trained protein
language models. We evaluated the classifiers using a 10-fold
cross-validation for the individual feature set. The next step was
to combine two or more feature sets to evaluate further models,
such as AAC-EAAC, AAC-CTDC, and AAC-ProtBert. For this,
we limited the embedding features to a maximum of one in the
combination. Five classification algorithms were included in the
experiments: Adaboost, XGBoost, SVM (with RBF kernel),
random forest (RF), and multilayer perceptron (MLP). Our
best model combines the features of CTDD, AAC, and
ProtT5-XL-UniRef50 with the XGBoost classification
algorithm. This model, with the model of the best feature set
from sequence-based feature groups and the model of the best
feature set from the protein embedding feature group, was then
evaluated with an independent dataset. For independent testing,
the entire training set was used to develop a model. In both model
building and independent testing, a random under-sampling
method was used to balance the training dataset, while the
testing dataset was not resampled to reflect performance in the
real-world unbalanced scenario.
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2 MATERIALS AND METHODS

2.1 Dataset
This study utilized unbalanced benchmark datasets compiled by
Al-barakati et al. (2019) to build their predictor, RF-GlutarySite.
This dataset collected positive glutarylation sites from various
sources, including PLMD (Xu et al., 2017) and (Tan et al., 2014)
and consisted of four different species (Mus musculus,
Mycobacterium tuberculosis, E. coli, and HeLa cells), for a total
of 749 sites from 234 proteins. Homologous sequences that
showed ≥40% sequence identity were removed using the CD-
HIT tool. The remaining proteins were converted into peptides
with a fixed length of 23, with glutarylated lysine as the central
residue, and 11 residues each upstream and downstream.

Negative sites were generated in the same way, but the central
lysine residue was not glutarylated. After removing homologous
sequences, the final dataset consisted of 453 positive and 2043
negative sites. The distributions of the training and testing
datasets are listed in Table 1. This dataset was also used by
Dou et al. (2021) to build the proposed predictor model
iGlu_Adaboost (Dou et al., 2021).

2.2 Feature Extraction
The extraction of numerical features from protein sequences or
peptides is an important step before they can be utilized by
machine learning algorithms. In this study, we investigated two
types of features: classic sequence-based features and features
derived from pre-trained transformer-based protein embeddings.
Classic sequence-based features were extracted using the iFeature
Python package (Chen et al., 2018). After preliminary
experiments, seven feature groups were chosen for further
investigation: AAC, EAAC, Composition/Transition/
Distribution (CTD), pseudo-amino acid composition (PAAC),
and amphiphilic pseudo-amino acid composition (APAAC). The
second type of feature, embeddings from pre-trained
transformer-based models, was extracted using models trained

FIGURE 1 | Workflow strategy for the development of ProTrans-Glutar model.

TABLE 1 | Number of positive and negative sites in training and test set.

Training set Test set

Positive sites 400 44 444
Negative sites 1703 203 1906

2103 247
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and provided by Elnaggar et al. (2021). It consists of six feature
sets from six protein models: ProtBERT, ProtBert-BFD,
ProtAlbert, ProtT5-XL-UniRef50, ProtT5-XL-BFD, and
ProtXLNet. The data for all extracted features are provided in
the Supplementary Material.

2.2.1 Amino Acid Composition and Enhanced Amino
Acid Composition
The AAC method encodes a protein sequence-based on the
frequency of each amino acid (Bhasin and Raghava, 2004). For
this type of feature, we used two variants.

The first variant is the basic AAC, in which the protein
sequence is converted into a vector of length 20, representing
the frequency of the 20 amino acids
(“ACDEFGHIKLMNPQRSTVWY”). Each element is calculated
according to Eq. 1, as follows:

f(t) � N(t)
N

(1)

where t is the amino acid type, N(t) is the total number of amino
acids t appearing in the sequence, andN is the length of the sequence.

The second variant is EAAC, introduced by Chen et al. (2018). In
this encoding, the EAAC was calculated using sliding windows, that
is, from a fixed window size, moving from left to right. To calculate
the frequency of each amino acid in each window, see Eq. 2:

f(t, win) � N(t, win)
N(win) (2)

where N(t,win) represents the number of amino acids t that
appear in the windowwin andN(win) represents the length of the
window. To develop our model, a default window size of five was
used. How these methods are applied to a protein sequence are
provided in Supplementary File S1.

2.2.2 Composition/Transition/Distribution
The CTD method encodes a protein sequence-based on various
structural and physicochemical properties (Dubchak et al.,

1995; Cai, 2003). Thirteen properties were used to build the
features. Each property was divided into three groups (see
Table 2). For example, the attribute
“Hydrophobicity_PRAM900101” divides the amino acids into
polar, neutral, and hydrophobic groups.

The CTD feature comprises three parts: composition (CTDC),
transition (CTDT), and distribution (CTDD). For composition,
an attribute contributes to three values, representing the global
distribution (frequency) of the amino acids in each of the three
groups of attributes. The composition is computed as follows:

C(r) � N(r)
N

(3)

where N(r) is the number of occurrences of type r amino acids in
the sequence and N is the length of the sequence.

For transition, an attribute also contributes to three values,
each representing the number of transitions between any pair of
groups. The transition is calculated as follows:

T(r, s) � N(r, s) +N(s, r)
N − 1

(4)

where N(r,s) represents the number of occurrences amino acid
type r transit to type s (i.e., it appeared as “rs” in the sequence),
andN is the length of the sequence. Similarly,N(s,r) is the reverse,
that is, the number of “sr” occurrences in the sequence.

The distribution feature consists of five values per attribute
group, each of which corresponds to the fraction of the sequence
length at five different positions in the group: first occurrence,
25%, 50%, 75%, and 100%.

2.2.3 Pseudo Amino Acid Composition
Pseudo amino acid composition feature was proposed by Chou
(2001). For protein sequence P with L amino acid residues P =
(R1R2R3. . .RL), the PAAC features can be formulated as

P � [p1, p2, . . . , p20, p20+1, . . . , p20+λ]T, (λ< L) (5)
where

TABLE 2 | Physicochemical attributes and its division of the amino acids.

Attribute Division

Hydrophobicity_PRAM900101 Polar: RKEDQN Neutral: GASTPHY Hydrophobicity: CLVIMFW
Hydrophobicity_ARGP820101 Polar: QSTNGDE Neutral: RAHCKMV Hydrophobicity: LYPFIW
Hydrophobicity_ZIMJ680101 Polar: QNGSWTDERA Neutral: HMCKV Hydrophobicity: LPFYI
Hydrophobicity_PONP930101 Polar: KPDESNQT Neutral: GRHA Hydrophobicity: YMFWLCVI
Hydrophobicity_CASG920101 Polar: KDEQPSRNTG Neutral: AHYMLV Hydrophobicity: FIWC
Hydrophobicity_ENGD860101 Polar: RDKENQHYP Neutral:SGTAW Hydrophobicity: CVLIMF
Hydrophobicity_FASG890101 Polar: KERSQD Neutral: NTPG Hydrophobicity: AYHWVMFLIC
Normalized van der Waals volume Volume range: 0–2.78 Volume range: 2.95–94.0 Volume range: 4.03–8.08

GASTPD NVEQIL MHKFRYW
Polarity Polarity value: 4.9–6.2 Polarity value: 8.0–9.2 Polarity value: 10.4–13.0

LIFWCMVY PATGS HQRKNED
Polarizability Polarizability value: 0–1.08 Polarizability value: 0.128–120.186 Polarizability value: 0.219–0.409

GASDT GPNVEQIL KMHFRYW
Charge Positive: KR Neutral: ANCQGHILMFPSTWYV Negative: DE
Secondary structure Helix: EALMQKRH Strand: VIYCWFT Coil: GNPSD
Solvent accessibility Buried: ALFCGIVW Exposed: PKQEND Intermediate: MPSTHY
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pu �
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fu

∑20

i�1fi + w∑λ

k�1τk
, (1≤ u≤ 20)

wτu−20

∑20

i�1fi + w∑λ

k�1τk
, (20 + 1≤ u≤ 20 + λ)

(6)

w is the weight factor and τk is the k-the tier correlation factor,
defined as

τk � 1
L − k

∑L−K
i�1 Ji,i+k, (k< L) (7)

and

Ji,i+k � 1
Γ
∑Γ

q�1[ΦqRi+k − ΦqRi]2 (8)

where Vq(Ri) is the q-th function of the amino acid Ri, and Γ the
total number of functions. In here Γ = 3 and the functions used are
hydrophobicity value, hydrophilicity value, and side chain mass
of amino acid Ri.

A variant of PAAC called amphiphilic pseudo amino acid
composition (APAAC) proposed in Chou (2005). A protein
sample P with L amino acid residues P = (R1R2R3. . .RL), is
formulated as

P � [p1, p2, . . . , p20, p20+1, . . . , p20+λ, p20+λ, . . . , p2λ]T, (λ< L)
(9)

where

pu �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fu

∑20

i�1fi + w∑2λ

j�1τj
, (1≤ u≤ 20)

wτu−20

∑20

i�1fi + w∑2λ

j�1τj
, (20 + 1≤ u≤ 20 + 2λ)

(10)

τj is the j-tier sequence-correlation factor calculated using the
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1 � 1
L − 1

∑L−1
i�1 H

1
i,i+1

τ2 � 1
L − 1

∑L−1
i�1 H

2
i,i+1

τ3 � 1
L − 2

∑L−2
i�1 H

1
i,i+2

τ4 � 1
L − 2

∑L−2
i�1 H

2
i,i+2, λ< L

/

τ2λ−1 � 1
L − 1

∑L−λ
i�1 H

1
i,i+λ

τ2λ � 1
L − 1

∑L−λ
i�1 H

1
i,i+λ

(11)

whereHi,j
1 andHi,j

2 are hydrophobicity and hydrophilicity values
of the i-th amino acid, described by the following equation:

H1
i,j � h1(Ri) · h1(Rj)

H2
i,j � h2(Ri) · h2(Rj) (12)

2.2.4 Pre-Trained Transformer Protein Embeddings
Protein language models has been trained from large protein
corpora, using the state-of-the-art transformer models from the
latest NLP research (Elnaggar et al., 2021). Six of the models were
applied to extract features for our task of predicting glutarylation
sites.

• ProtBERT and ProtBert-BFD are derived from the BERT
model (Devlin et al., 2019), trained on UniRef100 and BFD
corpora, respectively.

• ProtT5-XL-UniRef50 and ProtT5-XL-BFD are derived from
the T5 model (Raffel et al., 2020), trained on UniRef50 and
BFD corpora, respectively.

• ProtAlbert is derived from the Albert model (Lan et al.,
2020) trained on UniRef100 corpora.

• ProtXLNet is derived from the XLNet model (Yang et al.,
2020), trained on UniRef100 corpora.

Protein embeddings (features) were extracted from the last
layer of this protein language model to be used for subsequent
supervised training. This layer is a 2-dimensional array with a size
of 1024 × length of sequence, except for the ProtAlbert model
with an array size of 4096 × length of sequence. For the
glutarylation prediction problem, this feature is simplified by
summing the vectors along the length of the sequence; hence,
each feature group is now one-dimensional, with a length of 4,096
for ProtAlbert and 1,024 for the rest.

2.2.5 The Feature Space
The features collected were of different lengths, as summarized in
Table 3. These feature groups are evaluated either individually or
using various combinations of two or more feature groups. As an
example, for the combined feature group AAC-EAAC, a training
sample will have 20 + 380 = 400-dimensional features.

2.3 Imbalanced Data Handling
A class imbalance occurs when the number of samples is
unevenly distributed. The class with a higher number of
samples is called the majority class or the negative class,
whereas the class with a smaller number is called the minority
class. In the glutarylation dataset, the number of negative samples
was nearly four times that of positive samples. This imbalance
may affect the performance of classifiers because they are more
likely to predict a positive sample as a negative sample (He and
Garcia, 2009). A common strategy to solve this problem is by data
re-sampling, either adding minority samples (over-sampling) or
reducing majority samples (under-sampling). In this study, we
implemented a random under-sampling strategy (He and Ma,
2013) after preliminary experiments with various re-sampling
methods.

2.4 Machine Learning Methods
In this study, we used the XGBoost classifier (Chen and Guestrin,
2016) from the XGBoost package on the Python language
platform (https://xgboost.ai). This is an implementation of a
gradient-boosted tree classifier (Friedman, 2001). Gradient-
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boosted trees are an ensemble classifier built from multiple
decision trees, constructed one by one. XGBoost has been
successfully used in various classification tasks, including
bioinformatics (Mahmud et al., 2019; Chien et al., 2020;
Zhang et al., 2020). In our experiments, several other popular
classifiers are also compared and evaluated, including SVM, RF,
MLP, and Adaboost, provided by the scikit-learn package
(https://scikit-learn.org).

2.5 Model Evaluation
To achieve the model with the best prediction performance,
the model was evaluated using 10-fold cross-validation and an
independent test. For cross-validation, the training dataset was
randomly split into 10 folds of nearly equal size. Nine folds
were combined and then randomly under-sampled for
training, and the 10th fold was used for evaluation. This
process was performed with the other combination of folds
(nine for training and one for testing). To remove sampling
bias, the cross-validation process was repeated three times, and
the mean performance was reported as the CV result. For
independent testing, the entire training data were randomly
under-sampled, then used to build the model, and later
evaluated using the independent test set. Since the
randomness in the under-sampling may affect to the
performance result, this testing was repeated five times, and
the mean performance was reported as an independent test
result.

The performance of the cross-validation and independent test
results was evaluated using seven performance metrics: recall
(Rec), specificity (Spe), precision (Pre), accuracy (Acc), MCC, F1-
score (F1), and area under the ROC curve (AUC). These metrics
were calculated as follows:

Rec � TP

TP + FN

Spe � TN

TN + FP

Pre � TP

TP + FP

Acc � TP + TN

TP + TN + FP + FN

MCC � TP.TN − FP.FN(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

F1 � 2 ×
Rec.Pre
Rec + Pre

(13)

where TP is True Positive, TN is True Negative, FP is False
Positive, and FN is False Negative.

The AUC metric is obtained by plotting recall against
(1—specificity) for every threshold and then calculating the
area under the curve.

3 RESULTS

3.1 Models Based on Sequence-Based
Feature Set
We calculated the cross-validation performance for each
sequence-based feature set using five supervised classifiers:
AdaBoost, MLP, RF, SVM, and XGBoost. The performances of
these classifiers are shown in Table 4. It can be observed that no
classifier is the best for all feature groups. For example, using
AAC features, MLP performs the best based on the AUC score.
However, using EAAC features, the RF model has the best
performance, whereas MLP has the poorest. Among the six
different feature sets, the best model achieved was using
EAAC features combined with RF, with an AUC score of
0.6999. This model also had the best specificity, precision, and
accuracy compared to the other models.

3.2 Models Based on Embeddings From
Pre-trained Transformer Models
Based on the embeddings extracted from the pre-trained
transformer models, we evaluated the same five supervised
classifiers. The performance results of the models are
presented in Table 5. The combination of the ProtBERT
model and SVM can match the recall score with the classic
sequence-based feature result. However, all other metrics were
lower. In this experiment, the best model with respect to the AUC
score was a combination of features from the ProtAlbert model
and SVM classifier (AUC = 0.6744). This model also had the

TABLE 3 | Features investigated for method development.

Group Feature set Length of features

Amino acid composition AAC 20
EAAC 380

C/T/D CTDC 39
CTDT 39
CTDD 195

Pseudo amino acid composition PAAC 35
APAAC 50

Embeddings from pretrained transformer-based model ProtBERT 1,024
ProtBert-BFD 1,024
ProtAlbert 4,096
ProtT5-XL-UniRef50 1,024
ProtT5-XL-BFD 1,024
ProtXLNet 1,024
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highest cross-validation scores for precision, MCC, and F1-score.
It can also be noted that out of the six models, SVM performed
best on four of them compared to the other machine learning
algorithms.

3.3 Models Based on Combination of
Sequence-Based Feature and Pre-trained
Transformer Models Feature Set
To obtain the best model, we tested various combinations of two
or more feature sets to evaluate further models, such as AAC-
EAAC, AAC-CTDC, and AAC-ProtBert. For this, we limited the
embedding features to a maximum of one set in the combination.
Similar to previous experiments, five classification algorithms
were used: AdaBoost, XGBoost, SVM (RBF kernel), RF, andMLP.

Our best model, ProtTrans-Glutar, uses a combination of the
features CTDD, EAAC, and ProtT5-XL-UniRef50 with the
XGBoost classification algorithm. The performance of this
model is shown in Table 6, with comparison to the best
model from sequence-based features (EAAC with RF classifier)
and the best model from embeddings of the protein model
(ProtAlbert with SVM classifier). According to the cross-
validation performance on training data, this model has the
best AUC and recall compared with models with features
from only one group. These three models were then evaluated
using an independent dataset (Figure 2). This test result shows
that ProtTrans-Glutar outperformed the other two models in
terms of AUC, recall, precision, MCC, and F1-score. However, it
is severely worse in terms of specificity and slightly worse in terms
of accuracy compared to the EAAC + RF model.

TABLE 4 | Cross validation result of models from sequence-based features.

Feature
groups

Classifier Rec Spe Pre Acc MCC F1 AUC

AAC Adaboost 0.6120 0.6013 0.2654 0.6033 0.1690 0.3700 0.6433
MLP 0.6520 0.6192 0.2864 0.6255 0.2150 0.3977 0.6864
Random
Forest

0.6190 0.5809 0.2575 0.5881 0.1576 0.3635 0.6378

SVM 0.6395 0.5969 0.2714 0.6050 0.1868 0.3808 0.6651
XGBoost 0.5917 0.5482 0.2353 0.5565 0.1102 0.3362 0.6101

EAAC Adaboost 0.5983 0.6015 0.2608 0.6009 0.1584 0.3629 0.6384
MLP 0.5850 0.5946 0.2530 0.5928 0.1422 0.3529 0.6323
Random
Forest

0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999

SVM 0.5967 0.6434 0.2821 0.6345 0.1923 0.3827 0.6571
XGBoost 0.6408 0.6385 0.2945 0.6389 0.2230 0.4030 0.6834

CTDC Adaboost 0.7050 0.5518 0.2699 0.5809 0.2019 0.3901 0.6641
MLP 0.6867 0.6034 0.2905 0.6193 0.2300 0.4073 0.6912
Random
Forest

0.6408 0.5676 0.2579 0.5815 0.1639 0.3676 0.6556

SVM 0.6842 0.5657 0.2705 0.5882 0.1966 0.3874 0.6765
XGBoost 0.6367 0.5754 0.2605 0.5871 0.1672 0.3693 0.6450

CTDT Adaboost 0.6208 0.5762 0.2566 0.5847 0.1556 0.3627 0.6261
MLP 0.6408 0.5756 0.2622 0.5880 0.1708 0.3717 0.6439
Random
Forest

0.6025 0.5982 0.2603 0.5990 0.1588 0.3633 0.6241

SVM 0.6425 0.5841 0.2661 0.5952 0.1787 0.3760 0.6493
XGBoost 0.5783 0.5668 0.2390 0.5690 0.1147 0.3378 0.6015

CTDD Adaboost 0.6358 0.6046 0.2744 0.6106 0.1904 0.3831 0.6531
MLP 0.5942 0.5365 0.2434 0.5475 0.1120 0.3297 0.6065
Random
Forest

0.6967 0.6164 0.2994 0.6316 0.2476 0.4185 0.6987

SVM 0.6675 0.6111 0.2877 0.6218 0.2206 0.4017 0.6794
XGBoost 0.6675 0.6201 0.2927 0.6291 0.2282 0.4064 0.6847

PAAC Adaboost 0.5942 0.6052 0.2611 0.6031 0.1581 0.3626 0.6253
MLP 0.5958 0.5717 0.2462 0.5763 0.1321 0.3482 0.6261
Random
Forest

0.6375 0.5809 0.2633 0.5917 0.1723 0.3723 0.6413

SVM 0.6617 0.5905 0.2752 0.6041 0.1990 0.3885 0.6745
XGBoost 0.6217 0.5731 0.2554 0.5823 0.1537 0.3615 0.6375

APAAC Adaboost 0.6125 0.5976 0.2634 0.6004 0.1662 0.3682 0.6367
MLP 0.5658 0.5904 0.2450 0.5857 0.1237 0.3416 0.6162
Random
Forest

0.6458 0.5831 0.2671 0.5950 0.1805 0.3776 0.6464

SVM 0.6650 0.5970 0.2794 0.6099 0.2069 0.3932 0.6777
XGBoost 0.6425 0.5694 0.2596 0.5833 0.1668 0.3695 0.6375
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As shown in the ROC curves of the three models (Figure 3),
EAAC + RF performed better for low values of FPR, but for larger
values, ProtTrans-Glutar performed better. It is also noted that
ProtAlbert + SVM performed worse for most values of FPR.
Overall, ProtTrans-Glutarwas the bestmodel with anAUCof 0.7075.

4 DISCUSSION

From our study, it was shown that building prediction models
from traditional sequence-based features only provided limited
performance (Table 4). It was also shown that using only
embeddings from pre-trained protein models gave slightly
worse results, except that the recall performance was almost

the same (Table 5). When we combined the features from
these two groups, we found that the best performance was
achieved by the combination of the features CTDD, EAAC,
and ProtT5-XL-UniRef50 with the XGBoost classifier
(independent test AUC = 0.7075). This indicated that ProtT5-
XL-UniRef50 features on their own are not the best embedding
model during the individual feature evaluation (see Table 5), but
combined with CTDD and EAAC, it outperformed the other
models. It is worth mentioning that Elnaggar et al. (2021), who
developed and trained protein models, revealed that ProtT5
models outperformed state-of-the-art models in protein
classification tasks, namely in prediction of localization (10-
class classification) and prediction of membrane/other (binary
classification), compared to other embedding models.

TABLE 5 | Cross validation result of models from pre-trained transformer models.

Feature
groups

Classifier Rec Spe Pre Acc MCC F1 AUC

ProtBERT Adaboost 0.5767 0.5680 0.2389 0.5697 0.1142 0.3374 0.5996
MLP 0.5892 0.5608 0.2395 0.5662 0.1187 0.3396 0.6128
Random Forest 0.5567 0.6426 0.2681 0.6262 0.1602 0.3616 0.6415
SVM 0.7042 0.4775 0.2420 0.5207 0.1475 0.3578 0.6275
XGBoost 0.6033 0.6007 0.2619 0.6012 0.1616 0.3649 0.6398

ProtBert-BFD Adaboost 0.5433 0.5547 0.2231 0.5525 0.0773 0.3162 0.5776
MLP 0.5900 0.5645 0.2420 0.5694 0.1218 0.3430 0.6076
Random Forest 0.5383 0.6230 0.2510 0.6069 0.1289 0.3421 0.6122
SVM 0.6242 0.5819 0.2595 0.5899 0.1626 0.3662 0.6420
XGBoost 0.5908 0.5733 0.2453 0.5766 0.1295 0.3464 0.6142

ProtAlbert Adaboost 0.5875 0.5753 0.2450 0.5776 0.1284 0.3456 0.6193
MLP 0.5858 0.6189 0.2657 0.6126 0.1646 0.3615 0.6407
Random Forest 0.5808 0.6316 0.2703 0.6220 0.1697 0.3687 0.6535
SVM 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744
XGBoost 0.6092 0.5927 0.2604 0.5958 0.1597 0.3646 0.6477

ProtT5-XL-UniRef50 Adaboost 0.5533 0.5655 0.2306 0.5632 0.0938 0.3254 0.5897
MLP 0.6192 0.5633 0.2501 0.5739 0.1439 0.3558 0.6296
Random Forest 0.5608 0.6171 0.2562 0.6064 0.1419 0.3515 0.6237
SVM 0.6583 0.5710 0.2653 0.5876 0.1807 0.3777 0.6600
XGBoost 0.5933 0.5807 0.2497 0.5831 0.1377 0.3509 0.6183

ProtT5-XL-BFD Adaboost 0.5892 0.5600 0.2395 0.5656 0.1175 0.3405 0.5959
MLP 0.6000 0.5768 0.2502 0.5812 0.1396 0.3529 0.6188
Random Forest 0.5392 0.6163 0.2485 0.6017 0.1242 0.3399 0.6145
SVM 0.6550 0.5625 0.2604 0.5801 0.1711 0.3724 0.6548
XGBoost 0.5858 0.5862 0.2490 0.5862 0.1361 0.3489 0.6224

ProtXLNet Adaboost 0.5125 0.5343 0.2057 0.5302 0.0369 0.2934 0.5421
MLP 0.5325 0.5248 0.2081 0.5262 0.0450 0.2991 0.5463
Random Forest 0.5050 0.5668 0.2152 0.5551 0.0568 0.3015 0.5511
SVM 0.4742 0.5770 0.2103 0.5575 0.0408 0.2900 0.5460
XGBoost 0.5642 0.5504 0.2274 0.5530 0.0902 0.3238 0.5652

TABLE 6 | Performance comparison of the best models in each group.

Evaluation Models Length Rec Spe Pre Acc MCC F1 AUC

10-fold CV on Training Data ProtTrans-Glutara 1,599 0.6783 0.6277 0.3004 0.6374 0.2433 0.4158 0.7093
ProtAlbert + SVM 4,096 0.6283 0.6136 0.2767 0.6164 0.1919 0.3840 0.6744
EAAC + RF 380 0.6450 0.6598 0.3089 0.6570 0.2450 0.4171 0.6999

Independent Test Set ProtTrans-Glutara 1,599 0.7864 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075
ProtAlbert + SVM 4,096 0.6500 0.6286 0.2753 0.6324 0.2161 0.3866 0.6393
EAAC + RF 380 0.6409 0.6739 0.2989 0.6680 0.2479 0.4076 0.6574

aModel uses combined features CTDD-EAAC-ProtT5XLUniRef50 with XGBoost classifier.
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FIGURE 2 | Independent test evaluation of the best models from each group.

FIGURE 3 | ROC-Curve plot of best models in each group.

TABLE 7 | Performance comparison of existing models.

Models Resources Rec Spe Pre Acc MCC F1 AUC

GlutPred PLMD 0.5179 0.7850 0.2397 0.7541 0.2238 n/a 0.7663
iGlu-Lys PLMD 0.5143 0.9531 n/a 0.8853 0.52 n/a 0.8842
MDDGlutar PLMD 0.652 0.739 n/a 0.71 0.38 n/a n/a
iGlu_AdaBoost PLMD, NCBI, Swiss-Prot 0.7273 0.7192 0.3596 0.7207 0.36 0.48 0.6300
ProtTrans-Glutar PLMD, NCBI, Swiss-Prot 0.7822 0.6286 0.3147 0.6567 0.3196 0.4494 0.7075
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For further evaluation, we compared our model with previous
glutarylation site prediction models (Table 7). The first three
models, GlutPred, iGlu-Lys, and MDDGlutar, used datasets that
were different from our model and are shown for reference. The
other model, iGlu_Adaboost, utilized the same public dataset as
for our model and contained glutarylation sites from the same
four species. ProtTrans-Glutar outperformed the other models in
terms of the recall performance (Rec = 0.7864 for unbalanced
data). This high recall suggests that this model can be useful for
uncovering new and potential glutarylation sites.

Furthermore, we also evaluated our model by using a balanced
training and testing dataset using random under-sampling for
comparison with the RF-GlutarySite model (Table 8), which uses
the same dataset but is balanced before evaluating performance.
Because the authors of RF-GlutarySite did not provide their data
after the resampling process, we performed the experiments
10 times to handle variance from the under-sampling. The
ProtTrans-Glutar model showed a higher recall score of
0.7864 compared to RF-GlutarySite (0.7410), in addition to a
slightly higher accuracy, MCC, and F1-score. However, the
specificity and precision scores were lower.

In summary, the model improved the recall score compared to
the existing models but did not improve other metrics. However,
we would like to point out that GlutPred, iGlu-Lys, and
MDDGlutar based their glutarylation datasets on less diverse
sources (two species only), whereas ProtTrans-Glutar with RF-
GlutarySite and iGlu_Adaboost utilized newer datasets (four
species). The more diverse source of glutarylation sites in the
data may present more difficulty in improving performance,
especially in terms of specificity and accuracy. Compared with
iGlu_Adaboost, which used the same dataset, our model
improved their recall and AUC scores. Despite this, the
specificity is worse and will be a challenge for future research.

5 SUMMARY

In this study, we presented a new glutarylation site predictor by
incorporating embeddings from pretrained protein models as
features. This method, which is termed ProtTrans-Glutar,
combines three feature sets: EAAC, CTDD, and ProtT5-XL-
UniRef50. Random under-sampling was used in conjunction
with the XGBoost classifier to train the model. The
performance evaluations obtained from this model for recall,
specificity, and AUC are 0.7864, 0.6286, and 0.7075, respectively.

Compared to other models using the same dataset of more diverse
sources of glutarylation sites, this model outperformed the
existing model in terms of recall and AUC score and could
potentially be used to complement previous models to reveal
new glutarylated sites. In the future, refinements can be expected
through further experiments, such as applying other feature
selection methods, feature processing, and investigating deep
learning models.
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Models Resources Rec Spe Pre Acc MCC F1 AUC
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aRF-GlutarySite model balanced the training and testing dataset using undersampling.
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