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Abstract. Peatlands with very high C contents are generally considered a source of 

greenhouse gas (GHG) emissions. This research aimed to quantify the changes in peatland 

characteristics and GHG emission from the conversion of peatlands to agricultural areas. 

Height of water table, pH, electrical conductivity (EC), redox potential (Eh), organic carbon 

(OC), hot water-soluble C, total-N, the concentrations of NH4
+
, and NO3

-
, soluble-Al, soluble-

Fe, and the emission of CH4, CO2 and N2O were quantified before and after land clearing of 

peats for agriculture. Results of study showed that pH, EC, OC contents, hot water-soluble-C, 

and total-N did not change after peatland clearing for agriculture. On the other hand, the 

concentrations of NH4
+
, NO3

-
, soluble-Al, soluble-Fe, redox potential and height of water table 

increased significantly after the peatland land clearing. Methane emissions from peatlands 

before peatland clearing were in the range of 0.13-0.22 mg C m
-2

 h
-1

 increased significantly to 

0.14-0.31 mg C m
-2

 h
-1

 after the peatland clearing.  The land clearing of peatlands for 

agricultural practices also caused increases in CO2 and NOx emissions by 85% and 76%, 

respectively. Changes in GGH emissions were not related to the changes in substrates quality 

of peats (OC contents, total-N and hot water- soluble-C).  Results of the study indicate that 

increases in the GHG emission following the use of peatlands for agricultural areas are 

attributed to the changes in the peat characteristics. 

1.  Introduction 

Peatlands in Indonesia, which are commonly found in Kalimantan, Sumatra, and Papua, are part of 

world’s tropical peatlands and estimated to range from 16.8 to 27.0 million ha [1].  Peatlands with 

high rates of organic matter accumulation and low rate of decomposition are considered as sink of C. 

The amount of C stored in Indonesian peatlands is estimated to reach 55 Gt [2]. Peatlands are also 

capable of depositing water up to 10 times their mass [3,4]; therefore, peatlands are able to store large 

amounts of water during the rainy season and will then release slowly during the dry season [5,6]. 

Results of these studies indicate that peatlands in Indonesia play an important role in environments. 

Some of Indonesia's peatlands have been reclaimed and used for agricultural lands in the last two 

decades, especially for large-scale oil palm plantation [7].  Conversion of peatlands to agricultural 
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lands causes an increase in GHG emissions from reclaimed peatlands [8,9]. The use of 416,000 ha of 

deep peatlands for oil palm plantations in the Ex Mega Rice Project of Central Kalimantan, Indonesia 

is projected for the next 25 years to emit 93217 Mt CO2 equivalent [10].  The conversion of 

peatlands into agricultural lands may cause Indonesia to be a contributor country to GHG emissions in 

the world. 

Information on the mechanism of increasing GHG emissions due to the conversion of peatlands to 

agricultural areas is very crucial for the GHG emission mitigation of reclaimed-peatlands. Results of 

previous studies showed that long-term conversion of peatlands for agriculture results in changes in 

substrate quality of peats [11,12], which eventually results in changes in the GRG emission of 

peatlands.  The use of tropical peatlands for paddy cultivation for 15 years results in a decrease in 

carbohydrate content and an increase in lignin content [13].  Peat with O-alkyl-C structures decrease 

significantly, while peat alkyl-C structures show a significant increase after a-20-year agricultural 

practices in tropical peatlands [14]. Results of these studies imply that changes in the GHG emission 

due to long-term use of peatlands for agricultural is related changes in the substrate quality of peats.  

However, comprehensive information on factors controlling changes in the GHG emission due to 

short-term conversion of peatlands to agricultural areas is unavailable.  Therefore, the objective of this 

study was to quantify the immediate changes in the emissions of CH4, CO2, and N2O following the 

use of peatlands for agricultural areas. 

 

2.  Materials and Methods 

2.1. Experimental site and the measurement of gases 

The study site is administratively situated in the Desa Landasan Ulin Utara                             

                                u -District of Liang Anggang, Kota Banjarbaru, Province of South 

Kalimantan. The average temperature in the areas was 27-28 
o
C, and the annual precipitation was 

2,600 mm. Dominant vegetation in this peatlands were Melaleuca cajuputi Roxb, Melastoma 

malabathricum L., and Stenochlaena palustris (Burm.F) Bedd.   

Sampling and measurements of greenhouse gas emissions and peat characteristics were carried out 

at 15 different sampling points twice, before the land clearing (last week of November 2017) and after 

land clearing (second week of December 2017). Gas sampling was carried out using a static chamber 

method. The gas was collected at interval of 4, 8, 12 and 15 minutes after the closure of chamber 

using a 10 mL syringe through the septum in the middle of the chamber, then the collected gas was 

transferred to a 10 mL air-tight glass vial. The gas was then injected onto the Shimadzu GC-14A 

equipped with electron capture detector for N2O measurement, flame ionization detector for CH4 

measurement, and thermal conductivity detector for CO2 measurement. The calculation of gas fluxes 

were carried out using linear regressions of the change in gas concentration, the volume of chamber, 

and soil surface area and corrected for the field measured air temperature and atmospheric pressure 

[15]. 

2.2. Peat sampling and characterization 

Peat samples were collected from each sampling point at a depth of 30 cm.  Soil pH, electrical 

conductivity, height of water level, and redox potential were measured directly in the field. After 

removing plant debris, the samples were stored at 4 
o
C until the determination of peat chemical 

characteristics.  Ammonium and NO3 were extracted from peats using KCl 1 N 

(1:10=weight:volume), and the concentrations of NH4 and NO3 in the extract were measured using a 

hydrazine reduction method for NO3-N and an indophenol blue method for NH4-N [16].  The amount 

of organic-C in the peat was determined using the wet oxidation method of Walkley-Black [17], and 

total-N in the peats was measured using the Kjelhdahl method [18].  Hot water soluble-C was 

extracted from the peat using warm water (60 
o
C), and the concentration of organic-C in the extract 

was quantified using the anthrone-sulfuric acid method [19].  Soluble-Al and -Fe were extracted from 

the peat using NH4OAc 1 N pH 4.8, and the concentrations of Al and Fe in the extract were quantified 

using aluminon and o-penanthroline methods, respectively [20,21]. 
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2.3. Statistical analysis  

Comparison of mean using t-test was conducted to assess if there are differences in the means of 

variables before and after land clearing of peats for agriculture. Relationship between the emission of 

CH4, CO2, N2O and soil characteristics of peats was measured using correlation-regression analyses. 

All statistical analyses were performed using GENSTAT 12th Edition [22]. 

 

3.  Results and Discussion 

The conversion of peatlands to agriculture areas resulted in an immediate increases in the emissions of 

CH4, CO2, and N2O (Figure 1). Methane emission before peat land clearing for agriculture was higher 

than that before land clearing (P<0.05).  Methane emission before land clearing ranged from 0.13 to 

0.22 mg C m
-2

 h
-1

 (average 0.17 mg C m
-2

 h
-1

), while range of 0.130.31 mg C m
-2

 h
-1

 (average 0.23 

mg C m
-2

 h
-1

) CH4 emission  was observed after land clearing (Figure 1).  Land clearing of peatlands 

for agriculture also resulted significant increases in CO2 and N2O emission by 85.48% and 76.34%, 

respectively (P<0.05).   

 
Figure 1: Emissions of CH4 (A), CO2 (B), and N2O (C) before and after land clearing of peats for 

agriculture. The vertical bars represent standard errors of mean (n=15). Similar letters above columns 

indicate no statistical differences in GHG emissions between before and after land clearing of peats 

for agriculture based on the mean difference test at  P<0.05. 

 
It well known that the GHG emission are significantly influenced by environmental factors such as 

soil pH, redox potential, temperature [23,24] and changes in substrate quality of organic-C (peats)  

[25,26].  Peat characteristics before and after land clearing of peatlands were quantified to determine 

the relationship between changes in the GHG emissions and changes in peat characteristics before and 

after land clearing. Several peat characteristics such as peat pH, EC, organic-C and total-N contents, 

and hot water-soluble-C content were not significantly different between before and after land 

clearing (P>0.05; Table 1).  On the other hand, land clearing of peatlands for agriculture led to 

considerable increases in the height of water table, redox potential, the concentrations of NH4 and 

NO3, and the concentration of soluble -Al and -Fe (P<0.05; Table 1).  
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No. Peat Characteristics Before After 

1. Peat pH (H2O, 1:5)      3.49  0.05* a** 3.52  0.05 a 

2. Electrical Conductivity (mS) 391.99  9.07 a 368.18  6.25 a 

3. NH4
+
 (mg N kg

-1
) 9.76  0.94 a 20.10  2.14 b 

4. NO3
-
 (mg N kg

-1
) 9.94  1.94 a 22.16  1.37 b 

5. Height of water table (cm) 2.11  3.89 a -8.56  2.24 b 

6. Redox potential – Eh (mV) -7.29  6.81 a -71.47  9.87 b 

7. Organic C (g C kg
-1

) 189.59  6.59 a 192.56  6.48 a 

8. Total N (g N kg
-1

) 12.84  0.92 a 12.55  0.92 a 

9. Hot water soluble C (mg C kg
-1

) 32.43  5.29 a 31.18  5.30 a 

10. Soluble Al (mg Al kg
-1

) 11.38  1.05 a 22.64  1.90 b 

11. Soluble Fe (mg Fe kg
-1

) 15.37 1.62 a 32.93  2.73 b 

*   Standard error of mean (n=15). ** Different small case indicate statistically differences 

between peat characteristics before and after land clearing of peats for agriculture based on 

the mean difference test at  P<0.05. 

 

Table 1:  Changes in peat characteristics before and after the use of peatlands for agriculture. 

Results of the previous studies stated that changes in the emission of GHG due to land changes are 

attributed the changes in the substrate quality [27,28].  However, the parameters of peat substrate 

quality in this study such as organic-C, total-N, and hot water soluble-C were not significantly 

different between before and after land clearing of peatland for agriculture (P>0.01; Table 1) and 

were not related to the changes in the GHG emission (data not shown).  No significant changes in the 

parameters of peat substrate quality and no significant relation between substrate quality of peats and 

the GHG emission are probably due to short period before after land clearing (only three weeks) was 

not able to change the substrate quality of peats.   Therefore, changes in the GHG emission in this 

study was likely to be attributed to the changes in the chemical characteristics of peats before and 

after land clearing. Results of the analyses of correlation and regression showed that the emission of 

CH4 was related significantly to the changes in the height of water table and redox potential (Figure 

2A and 2B), the emission of CO2 was negatively correlated with the concentration of soluble-Al and -

Fe (Figure 2C and 2D), and the emission of N2O have significant correlation with the concentration of 

NO3 and NH4 (Figure 2E and 2F). 

It was reported in the previous study that water table level control the emission of CH4 from 

peatlands in China, in which the water level surface of peatlands drawdown from 0 to 50 cm below 

soil surface lead to 82% reduction in the CH4 emission [29]. Results of study of tropical peat swamp 

forest also showed that increasing ground water level led to the development of anaerobic conditions, 

which is eventually stimulated CH4 production [30].  Redox potential (Eh) is commonly used to 

determine the methanogenic activity.  The methanogenic activity is negatively correlated with the Eh 

values, in which Eh of below +240 mV are reported to be threshold levels for methanogenic activity 

[31].  Relationship between redox potential and the emission of CH4 in this study was in agreement 

with previous studies in the tropical peatlands [32,33].  
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Figure 2.  Relationship between CH4 emissions and redox potential (A), CH4 emissions and height of 

water table (B),  CO2 emissions and soluble-Al (C), CO2 emissions and soluble-Fe (D), N2O 

emissions and NH (E), and N2O emissions and NO3 (F). 

 

Carbon dioxide emission of peatlands was in the range of 42.35112.35 mg C m
-2

 h
-1 

before land 

clearing increased to 98.45234.40 mg C m
-2

 h
-1 

after land clearing (Figure 2).  The presence of Fe 

and Al in soils reduces C mineralization due the stabilization of organic-C through cation bridging 

and ligand exchange of organic-C by Al and Fe, which is eventually increasing the amount of organic-

C protected from microbial decomposition [34,35].  Results of this study showed that the emission of 
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CO2 was significantly and negatively correlated with soluble-Al and -Fe (Figure 2), indicating 

important roles of soluble Al and Fe in reducing C mineralization of peats.  Results of this study are 

consistent with the previous studies stated that the presence Al and Fe decreases C mineralization 

[36,37]. 

The amounts of NH4 and NO3 are often considered to be the factors controlling the rate of N2O 

emission through nitrification and denitrification processes [38,39].  The concentration of NH4 and 

NO3 increased from 3.5615.25 mg N kg
-1

 before land clearing to 12.3541.32 mg N kg
-1 

after land 

clearing and from 0.9821.35 mg N kg
-1 

before
 
land clearing to 14.5631.24 mg N kg

-1 
after land 

clearing, respectively (Table 1 and Figure 2).  Increasing the amounts of NH4 and NO3 following land 

clearing of peats for agriculture results in increasing the emission of N2O.  This was supported the 

significant and positive correlation between the emission of N2O and the concentration of NH4 and 

NO3 (Figure 2).       

 
4.  Conclusion 

The emissions of CH4, CO2, and N2O increase significantly following land clearing of peatlands for 

agriculture.  Land clearing of peatland for agriculture also result in significant changes in chemical 

characteristics peats, i.e. height of water table, redox potential (Eh), the concentration of NH4 and 

NO3, and the concentration of soluble-Al and -Fe  However, peat pH, electrical conductivity and the 

parameters of peat substrate quality such as  organic-C, total-N, and hot water-soluble-C did not 

change following land clearing of peatlands for agriculture. Short period of peatland conversion for 

agriculture (three weeks) was thought to be unable to changes the substrate quality of peats. Results 

obtained in this study demonstrate that changes in the emission of CH4, CO2, and N2O as a results of a 

short period of peatland conversion for agriculture were attributed to the changes in the chemical 

characteristics of peats.  
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