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Abstract—For a steam power plant, condenser vacuum is an 

important variable to monitor. Insufficient condenser vacuum can 

cause high heat rate. An approach is proposed to modeling 

condenser vacuum based on the autoregressive-moving-average 

(ARMA) combined with the generalized-autoregressive-

conditional-heteroscedasticity (GARCH) technique. It makes use 

of data available from a generating unit of the Asam-asam Steam 

Power Plant over a period when the unit was running under severe 

off-design conditions. In that period, the unit experienced poor 

condenser vacuum. The data contain observations on variables, 

some of which are important for studying conditions regarding 

condenser vacuum at the unit. The resulting models can explain 

how condenser vacuum varies in response to changes in 

conditions. The predictive performance is comparable to that 

obtained using autoregressive neural network and support vector 

regression. Further remarks on the modeling issues are given. 

Keywords—ARMA-GARCH, condenser vacuum, off-design 

condition, statistical modeling, steam power plant 

I. INTRODUCTION 

Steam turbines are designed to operate under fixed, 
assumed conditions [1] while fluctuating and deteriorating 
conditions occur during the lifetime of the plants. The 
importance of studying off-design performance of power 
plants cannot be understated as many suggest [2–9]. One of 
such conditions is insufficient condenser vacuum. Condenser 
vacuum is an important variable to monitor and to control in a 
steam power plant [10]. Any decrease in condenser vacuum 
(commonly caused, among others, by leakage and excessive 
air ingress) would increase heat rate and, therefore, operation 
cost [11]. 

Operation data from the Asam-asam Steam Power Plant in 
South Kalimantan Province of Indonesia reveal a period 
where the generating unit number 2 or Unit 2 (with rated 
capacity of 65 MW) of the power plant was running under 
rather severe off-design conditions. One indication of this is 
the insufficient vacuum in its shell-and-tube condenser. In that 
period, the best vacuum was –0.0755 MPag. This value had 
increased quite significantly above the required pressure, 
which should be around –0.09 MPag as measured when it was 
first commissioned in 2000. This condition, probably 
combined with several others, led to alarmingly high observed 
values of the exhaust hood temperature of the turbine with a 
potential to cause the entire unit to trip. 

With condenser vacuum as a variable of interest, it is 
important to understand and to be able to explain how it 
behaves in response to variations in other variables and 
changes in conditions. Modeling the relationships among 
these variables is an essential step toward understanding and 

predicting their actual behaviors. In particular, information on 
such behaviors under off-design conditions may not be 
available during the design phase but is needed by engineers 
responsible for running the system. 

For control purposes, several methods have been proposed 
for predicting condenser vacuum values as recently reported 
in [12–14]. Most are based on machine learning techniques 
such as regression techniques, neural network, and the 
increasingly popular long short term memory. Except for 
regression, a model of this type tends to behave like a ‘black 
box’ and has limited practical use when it comes to explaining 
the variation in condenser vacuum. Few statistical models 
have also been proposed, e.g., in [15–17] for monitoring 
power plant performance by utilizing operation data. The 
problem with most of them is that they assumed that 
observations are not autocorrelated over time. Such an 
assumption is prone to violation especially when the data 
reflect severe off-design conditions. 

This paper proposes an approach toward modeling 
condenser vacuum by considering the nature of time series 
data that reflect off-design conditions. The resulting model 
should be capable of uncovering how condenser vacuum 
behaves in response to changes in conditions despite various 
effects in the time series data. In that way, the model can 
behave like a ‘white box’ that presents the relationships 
among variables based on statistical inference and in an 
explanatory way. 

II. METHOD 

A. Model Structure 

Since changes in load take place randomly at all times 
followed by adjustments in power generation [18], other 
system variables are also considered in the model as 
explanatory variables or external regressors. The criteria for 
selecting such variables include the importance of their 
contribution to the variation in condenser vacuum and their 
proximity to where condenser vacuum takes place. All in all, 
the choice should be both theoretically sound and a reflection 
of operational knowledge about the system. One obvious 
choice in particular is the generator active power, which is the 
power that is eventually used to meet the load demand. It is 
also important to follow the parsimony principle [19]. 

Serial correlation or autocorrelation is first dealt with 
using the autoregressive moving average (ARMA) part [20]: 
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the tth observation on the ith of k explanatory variables or 
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1 ,
  as the conditional mean of 𝑦𝑡 , is a 

demeaned version of the famous ARMA(p, q) model, where p 

= q = 1, 2, …. This model assumes that ,2

t
  which is the 

conditional variance of ,
t

y  is constant, a condition known as 

homoscedasticity. This assumption is also very often violated. 

Heteroscedasticity (the opposite of homoscedasticity) is 

taken care of by modeling variance 2

t
  using a generalized 

autoregressive conditional heteroscedasticity (GARCH) part 
[21, 22]. This is the variance model. GARCH models are a 
class of statistical models successfully used in predicting the 
volatility of returns on financial assets. There is no general 
agreement on the definition of volatility. It can either mean 
conditional standard deviation or conditional variance. Three 
GARCH(a, b) models considered in this paper include 

• The standard GARCH or sGARCH(a, b) model [22]: 
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where 
ti

v
,

 is the tth observation on the ith external 

regressor of the variance model, and ,  ,
i

  ,
i

  and 

i
  are the model parameters. 

• The Glosten-Jagannathan-Runkle GARCH or 
gjrGARCH(a, b) model [23]: 
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where 
t

I  is 1 for 0
t

  and 0 otherwise for all t, and 

i
  is the ‘leverage’ parameter. Notice how a negative 

value of the previous 
1−t

  can bring a ‘shock’ to .2

t
  

That is leverage. 

• The exponential GARCH or eGARCH(a, b) model 
[24]: 
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A conditional distribution is chosen for .
t

z  Several 

probability distributions are considered including the well-

known normal and Student’s t distributions and their skew 
variants [25]. 

Notice how the combined model handles the time series in 
two separate parts simultaneously: the ARMA mean model 
and the GARCH variance model, with each one now 
representing a time series. The method works because the 
effect of heteroscedasticity is now captured through changes 

in 
2

t
  in (2) and, subsequently, in 

t
z  that has its own 

conditional probability chosen to fit .
t

  Without (2), (1) 

would be fitted regardless of changes in .2

t
  The fact that 

both parts accommodate information brought by external 
regressors makes the modeling approach even more useful for 
this study. 

B. Model Estimation, Testing, and Selection 

All parameters in (1, 2) along with parameters of the 
chosen conditional distribution have to be estimated 
simultaneously using the method of maximum likelihood [26]. 
The ‘rugarch’ package [27] in R statistical programming 
language [28] offers functions for that purpose and is used in 
this paper. With four conditional probability distributions and 
three GARCH models, 12 sets of models are estimated for 
every unique combination of (p, q, a, b). 

With all parameters in a resulting model substituted by 
their corresponding estimates, the tth residual, i.e., the 

estimate of 
t

  is computed sequentially by setting initial (t = 

0) observations equal to zero in (1). Fitted values are obtained 
by subtracting these residuals from the corresponding 
observations. 

If an ARMA-GARCH model does fit the data, the 
residuals have to be independent from and identically 
distributed as each other (or iid). In other words, the model, in 
terms of its residuals, has to pass a number of significance 
tests. 

Each resulting ARMA-GARCH model is tested for serial 
correlation in the residuals using the Ljung-Box test [29], 
autoregressive conditional heteroscedasticity using the 
ARCH-LM test [22], effects of leverage on residuals using the 
sign bias test [30], and distributional fitness using the Pearson 
goodness-of-fit test [31]. The stability of estimates is also 
tested using the Nyblom test [32]. The significance level is 
0.05. The model passes a test if the test result is not significant. 
All the tests are covered in the R package mentioned above. 
To select between two competing models the Akaike 
Information Criterion (AIC) [33] is taken as the criterion. A 
low AIC is preferred. 

C. Model Analysis and Performance Testing 

The selected model is studied by looking at the estimates 
of its parameters. These estimate values should be able to 
reveal how condenser vacuum behaves in response to 
variability in operating conditions. Further tests based on the 
z-test (normal test, or t-test with infinite degrees of freedom) 
are required for these estimates to decide whether certain 
relationships in the model are significant or just due to mere 
chance. Decisions are based on a significance level of 0.05. 

The prediction performance of the ARMA-GARCH 
model is then compared to the performance of autoregressive 
neural network (NNAR) [34] and the support vector 
regression (SVR) [35]. The ‘forecast’ [36] and ‘e1071’ [37] 
packages in R provide the required tools for NNAR and SVR 



computations, respectively, in this study. The metrics include 
the usual mean absolute error (MAE), mean absolute 
percentage error (MAPE), mean absolute scaled error 
(MASE), median absolute error (MDAE), relative absolute 
error (RAE), and root mean squared error (RMSE) [38]. Small 
values for these metrics are preferred. 

III. RESULTS AND DISCUSSIONS 

A. Data Description 

A volume of operation data of the Asam-asam Steam 
Power Plant is available from a period around which relatively 
severe off-design conditions were experienced at Unit 2 in 
relation to condenser vacuum. The original observations were 
obtained on 138 system variables. They were taken in the 
interval of 2 or 3 hours resulting in 11 observations per 
variable every 24 hours (the company’s standard log sheet 
format). 

A batch of data containing 143 observations is available 
from Unit 2 (13 consecutive days: from 1 Dec 2016 to 13 Dec 
2016). They are split into the first 121 observations as training 
data and the remaining 22 observations as testing data referred 
to here as Set A and Set B, respectively. 

Since the original observations are not equally-spaced, 
they are transformed from 11 observations per day to 12 by 
simple interpolation. A two-hour interval is created between 
two adjacent transformed values. The fitted or predicted 
values are transformed back into 11 values per day with the 
original intervals. 

B. Modeling Condenser Vacuum 

Two other variables (k = 2) are considered as external 
regressors in (1) to fit the model, i.e., active power (MW) and 

cooling water inlet temperature (C). Active power is a major 
indicator. Power is generated to meet the load demand. To 
stabilize supply voltage and frequency, it varies in response to 
demands [18]. The need to generate power dictates how other 
variables behave. Meanwhile, cooling water inlet temperature 
immediately affects heat transfer inside the condenser and, 
therefore, is considered as another external regressor. 

The modeling focus is initially on a simple combination of 
(p, q, a, b), i.e., (1, 0, 1, 1). Simpler combinations either fail in 
a significance test or produce higher AIC values. Models 
obtained by adding more variables such as main steam flow, 
main steam temperature, and/or main steam pressure also tend 
to result in higher AIC values or fail in some tests. The same 
also happens to models that take only one external regressor. 

Of the 12 models for the (1, 0, 1, 1) combination, an 
ARMA(1, 0)-eGARCH(1, 1) model with a Student’s t 
distribution as the conditional distribution gives the lowest 
AIC of –8.4511. The variance model does not take any 
external regressor. The shape parameter of the conditional 

distribution is estimated to be v̂  = 3.70598. The symbol “^” 

indicates the maximum likelihood estimator of the 
corresponding parameter. By referring to (1 and 2.c), the 
remaining estimates are as follows: 

• ̂  = –1.38599, 
1

̂  = 0.00465, and 
2

̂  = 0.01145. All 

are significant. This implies that the conditional mean 
of condenser vacuum at any time t is significantly 
related active power (by a factor of 0.00465) and 
cooling water inlet temperature (by a factor of 
0.01145) at that time. 

• 
1

̂  = 0.71499. It is significant. This suggests that 

autocorrelation is present. 

• 
1

̂  = 0.41352, 
1

̂  = 0.73569, ̂  = –6.61990, and 
1

̂  

= –0.14397, and. The first three are significant and the 

last one is not. This means that 
2

t
  is also serially 

correlated in (3.c), it implies heteroscedasticity. No 

significant relation is evident between 
2

t
  and ,

1−t
y  

where the latter is encapsulated in .
1−t

z  

After being transformed back to 11 observations per day, 
fitted values are plotted along with the actual observations in 
Fig. 1. RMSE of the fitting is 0.000536 MPa after the fitted 
values are transformed back into 11 observations per day. 

Based on 
1

̂  and ,ˆ
2

  it can be confirmed that condenser 

vacuum is systematically related to both active power and 
cooling water inlet temperature at Unit 2. The positive values 

of both 
1

̂  and 
2

̂  further suggest that an increase in any of 

the corresponding variables explains an increase in the 
expected value of condenser pressure. 

Since the system works in a cycle, the relationship 
between condenser vacuum and its external regressors may go 
both ways to some extent. In a normal operation mode, 
however, active power is generated to meet the load demand 
regardless of condenser vacuum. Condenser vacuum does 
affect how active power is generated, that is, it affects heat rate 
[11]. 

Changing lags from (1, 0, 1, 1) does not seem to produce 
a successful model in term of the significance tests. Table I 
shows the effects of varying the lag parameters on the above 
ARMA-eGARCH model. 

C. Predictive Performance 

Although prediction is not the intension of deriving 

models in this study, predicting condenser vacuum 
t

y  is quite 

straightforward given active power t
x

,1  and cooling water 

inlet temperature .
,2 t

x  Using the test data Set B, a comparison 

of predictive performance is made among ARMA(1, 0)-
eGARCH(1, 1), NNAR, and SVR as shown in Table II and 
Fig. 2. The NNAR model is based on 50 networks, each of 
which is a 2-2-1 network with 9 weights, 1 lag, and 2 hidden 
 

 

Fig. 1. Vacuum actual values (––) versus fitted (- - -) 

  



TABLE I.  VARYING LAG PARAMETERS 

p q a b Effect 

1 1 1 1 Significant in Ljung-Box, 

Nyblom tests 

2 0 1 1 Significant in Ljung-Box, 

Nyblom tests 

1 0 2 1 Significant in Nyblom test 

1 0 1 2 Significant in goodness-of-
fit test 

1 0 2 2 Significant in Nyblom test 

1 2 1 1 Significant in Ljung-Box, 

Nyblom tests 

2 1 1 1 Significant in Ljung-Box 
test 

1 2 2 1 Significant in Ljung-Box, 

Nyblom, goodness-of-fit 

tests 

1 2 1 2 Significant in Ljung-Box 
test 

 

nodes. It is optimized over AIC. The -SVR is based on radial 

kernel,  = 1, tuned for  and cost. 

In real situations, 
t

x
,1
and t

x
,2  would not be available and 

have to be predicted as well. Table III shows results for this 
based on performance metrics averaged over 100 runs for each 
model. For the ARMA-GARCH model, active power and 
cooling water inlet temperature are predicted based on an 
ARMA(1, 1)-eGARCH(2, 2) model with a skew Student’s t 
distribution and an ARMA(2, 0)-eGARCH(1, 1) model with a 
Student’s t distribution, respectively. Both are without 
external regressors. The predictive performance of the 
ARMA-GARCH model is comparable to that achieved using 
NNAR and SVR. 

D. A Comparison to a Similar Generating Unit 

Another generating unit in the thermal plant is Unit 1. This 
is practically identical to Unit 2 and was also commissioned 
in 2000. It also experienced poor vacuum, though slightly 
better, around the same period as Unit 2. Data containing 110 
observations (from 22 Dec 2016 to 31 Dec 2016) from Unit 1 
are also available. 

Table IV compares important statistics from Unit 1 and Set 
A of Unit 2. These statistics suggest that good or poor 
condenser vacuum is related to good or poor exhaust hood 
temperature and active power generation. High observed 
values of exhaust hood temperature often indicate heat 
accumulation at the low-pressure stage of the turbine. This is 
likely due to low-pressure steam unable to freely enter the 
condenser because of high pressure (poor vacuum) inside the 
shell. If this continues for a long period, the effect could be 
catastrophic for the turbine blades as well as other parts. 

Although the off-design conditions at Unit 1 are not 
particularly impressive, they still allowed the unit to perform  
 

TABLE II.  PREDICTIVE PERFORMANCE ON SET B 

Metric 
ARMA- 

GARCH 
NNAR* SVR* 

MAE+ 0.0055 0.0065 0.0062 

MAPE 0.0075 0.0089 0.0085 

MASE 0.7184 0.8499 0.8109 

MDAE+ 0.0059 0.0069 0.0057 

RAE 1.0098 1.1946 1.1398 

RMSE+ 0.0064 0.0076 0.0071 

* vary due to random weights and tuning; + in 0.1 MPa 

 

Fig. 2. Prediction based on Set B: actual (––), ARMA-GARCH(- - -), 

NNAR (- ∙ -), SVR (∙ ∙ ∙) 

relatively better than Unit 2. More importantly, they did not 
appear to potentially lead to a possible emergency shutdown. 

Fitting another ARMA(1, 0)-eGARCH(1, 1) model of 
condenser vacuum at Unit 1 with active power and cooling 
water inlet temperature as the external regressors and a 
Student’s t distribution as the conditional distribution 
produces an AIC value of –8.8187. The variance model takes 
no external regressor. The corresponding RMSE is 0.000558 
MPa. Apparently, two models with the same specifications fit 
both data Set A and data at Unit 1 despite the difference in the 
severity of the off-design conditions at both units. 

It is not common to assess the variation of the response 
variable of an ARMA-GARCH model in term of explained 
variance as in linear models. This is the proportion of variance 
of the response variable that is due to the mean model, while 
an ARMA-GARCH model represents both the mean and the 
variance. However, to put things in the perspective of a linear 
model, the proportion of variance explained by the mean 
model can be measured using the coefficient of determination 
as follows: 
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where 
t

ŷ  is the fitted value of 
t

y  as given by the model and 

y  is the sample mean. With m = 1, (3) gives the (ordinary) 

coefficient of determination. Setting m equal to the number of 
parameters in the model that are estimated results in the 

adjusted coefficient of determination .2

adj
R  This coefficient is 

computed using values that are immediately fed to and 
returned by the model. 

The ARMA(1, 0)-eGARCH(1, 1) model at Unit 1 gives 
2

adj
R  = 0.9152. This means that if the variation is seen only  

 

TABLE III.  AVERAGE PREDICTIVE PERFORMANCE ON SET B 

Metric 
ARMA-

GARCH 
NNAR* SVR* 

MAE+ 0.0050 0.0057 0.0070 

MAPE 0.0069 0.0079 0.0095 

MASE 0.6583 0.7494 0.9068 

MDAE+ 0.0048 0.0044 0.0062 

RAE 0.9253 1.0533 1.2746 

RMSE+ 0.0062 0.0073 0.0086 

* vary due to random weights and tuning; + in 0.1 MPa 



TABLE IV.  COMPARING UNIT 1 AND UNIT 2 

Variable Statistic Unit 1 Unit 2 

Condenser vacuum (0.1 MPag) Average –0.784 –0.729 

Median –0.782 –0.728 

Exhaust hood temperature (C) Average 61.6 65.9 

Median 62.0 65.8 

Active power (MW) Average 56.81 55.71 

Median 57.34 55.95 

 

from how the conditional mean varies, the model explains 
91.52 percent of the variance of condenser vacuum at Unit 1 
for the operation period described by the corresponding data. 
By the same reasoning, the mean model explains a mere 
63.01percent of the variance of condenser vacuum at Unit 2; 
this is based on the previous ARMA(1, 0)-eGARCH(1, 1) 

model with data Set A and the resulting 2

adj
R  = 0.6301. 

Although these proportions of variance explained may not 
be accurate for an ARMA-GARCH model, they are quite 
indicative about the difference between two off-design 
conditions at two supposedly identical units. At Unit 1 where 
poor vacuum seemed to send no concerning signals in the 
form of high exhaust hood temperature, a high proportion of 
variations in condenser vacuum were adequately explained by 
the mean model. This was not necessarily the case at Unit 2 
during the period of Set A. 

Nevertheless, an ARMA-GARCH model is not a linear 
model. The variation in condenser vacuum should also be 
explained by how its volatility varies according to the variance 
model. The extent to which this model explains the entire 
variation may remain intractable as far as this study is 
concerned. 

One can always assess the volatility of condenser vacuum 
by looking at its conditional standard deviation. It can be 
computed directly from (2). At Unit 1 the conditional standard 
deviation of condenser vacuum ranges from 0.0002132 MPa 
to 0.0007375 MPa. That behavior is less volatile than that at 
Unit 2 with the conditional standard deviation ranging from 
0.0002490 MPa to 0.0014094 MPa. 

IV. REMARKS 

As demonstrated in the previous sections, the ARMA-
GARCH modeling approach offers the possibility to explain 
the behavior of condenser vacuum toward changes in 
operating conditions. It enables variations in condenser 
vacuum to be explained by variations in other variables. In 
short, it helps reveal the intricate relationships between 
condenser vacuum and other variables. 

This modeling technique is particularly suitable for off-
design conditions, which saw in the case of Unit 2 a series of 
extreme observations that would have been considered 
potential to cause an emergency shutdown. Under such 
conditions, it reveals the sensitivity of condenser vacuum to 
variations in other variables. 

The adequacy of the mean model in explaining the 
variation in condenser vacuum appears to be related to the 
severity of the off-design conditions. The variance model 
predicts a more volatile behavior under more severe off-
design conditions. 

With ARMA-GARCH models, fitness is achieved and 
interpretation is made by way of statistical inference. This is 
implemented through estimation and a series of significance 
tests. It actually requires a moderate size of data. The 

minimum recommended size is 100 observations per variable. 
Estimates of model parameters are preferred to have small 
standard errors, which are difficult to obtain with a small 
sample size. 

The combination of an exponential GARCH model and 
the Student’s t distribution as the conditional distribution is 
particularly recommended for modeling condenser vacuum. 
By slightly adjusting p and, occasionally, q of the ARMA part 
of the model, one may arrive at a model that passes all the 
required significance tests with reasonably low AIC. 

Simplicity is always a concern in ensuring the practicality 
of deriving a model by practicing engineers. It implies a small 
number of external regressors, small numbers of lags (p, q, a, 
b), and a simple conditional distribution. Provided that the 
data are available, the engineer can simply experiment with 
several GARCH models (probably exponential ones) to arrive 
at the most suitable one. In that way, a monthly feed of such 
data should be adequate for a regular evaluation of condenser 
vacuum. 

A more sophisticated model may be derived by using 
autoregressive fractionally integrated moving average (or 
ARFIMA) in place of ARMA. However, more sophistication 
could mean more complexity in searching for an optimal 
combination of parameters subject to the model passing all the 
required tests. More work should be devoted to studying the 
computational complexity. 

V. CONCLUSIONS 

The importance of studying condenser vacuum under off-
design conditions has been highlighted. Modeling the 
relationship between condenser vacuum and other variables in 
the system is essential for that purpose. An approach to 
modeling condenser vacuum has been proposed based on the 
ARMA-GARCH modeling framework. Data from real world 
operations of a steam power plant have been used for studying 
the models. The results show the usefulness of the technique 
in unraveling from time series conflicting effects brought by 
serial correlation and heteroscedasticity. The resulting models 
are capable of separating information brought by explanatory 
variables on condenser vacuum despite various other effects 
under off-design conditions. They present relationships 
between condenser vacuum and other variables based on 
statistical inference and in an explanatory way. They enable 
variations in condenser vacuum to be explained by variations 
in these variables. Condenser vacuum is significantly related 
to both active power and cooling water inlet temperature. The 
severity of off-design conditions is somehow related to how 
adequate the mean model is in explaining the variation in 
condenser vacuum and to its volatility. The models also show 
predictive performance comparable to some prominent 
machine learning techniques tailored for that purpose. Finally, 
some important remarks have also been provided. 
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