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ABSTRACT  

Active compounds of ramania leaf extract (Bouea macrophylla Griff) have potential as an anti-
inflammatory. It was found that the active compounds contained in Bouea macrophylla Griff consisted 
of humulene, caryophyllene, phytol, 2-methyl-cis-7,8-epoxynonadecane, squalene, vitamin E, retinol 
acetate, ethyl palmitate, gamma-himachalene, and methyl ricinoleate. This study aims to determine 
whether the active compounds of B. Macrophylla Griff have a good interaction with Toll Like Receptors-
4 as an anti-inflammatory drug candidate. This type of research is in silico using the molecular docking 
method. The docking process is carried out using Autodock Vina which has been integrated into the 
PyRx application. All active compounds of Ramania leaf extract meet the requirements of Lipinski's five 
rules, pharmacokinetic test and toxicity test. The best compound obtained was vitamin e with a binding 



affinity of -8.9 kcal/mol, had a hydrogen interaction and had the same seven amino acid residues as the 
inhibitor. The active compound of Ramania leaf extract has a good interaction with Toll Like Receptors-
4, which means it has potential as an anti-inflammatory. 
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1.0 Introduction 

Inflammation is a physiological response of the immune system to damage to the body such as 
injury, invasion of pathogens, exposure to toxic compounds or irradiation [1]. Inflammatory responses 
occur through activation of coordinated signaling pathways that regulate levels of inflammatory 
mediators in host tissue cells and inflammatory cells recruited from the blood. . Cellular and molecular 
events and interactions efficiently minimize injury and contribute to the restoration of tissue homeostasis 
[2] 

In the inflammatory phase, chemotactic agents such as bacterial products Pathogen Specific 
Associated Molecules Pattern (PAMP), Histamine, Damage Associated Molecules Pattern (DAMP) 
Prostaglandi, complement factor and leukotriene which will later be captured by Toll Like Receptors 
(TLR) and stimulate the activation of intracellular signaling pathways, namely NF-kB [3-5]. 

Toll Like Receptors (TLR) have an important role in the inflammatory process because they can 
recognize patterns and become the first line of defense against pathogens and affect the innate and 
adaptive immune systems [6]. Toll Like Receptors-4 is a member of the TLR family that is widely 
expressed on the surface of cells present in the oral cavity such as epithelium, neutrophils, macrophages, 
dendritic, endothelial, natural killer, stroma, whose signaling pathways are important for inducing the 
inflammatory phase [7]. 

Optimal conditions are needed for the wound healing process so drugs containing antibacterial, anti-
inflammatory and antiseptic are often given [8-9]. People are starting to use medicinal plants for 
traditional medicine because medicinal plants have several advantages, namely lower side effects 
compared to drugs made from synthetic materials [10-12]. 

One of the plants used as traditional medicine is ramania (Bouea macrophylla Griff) which spreads 
to grow in the Southeast Asian region, especially Indonesia, Vietnam, Malaysia and Thailand [13-15]. 
Ramania leaves contain secondary metabolites such as triterpenoids, phenols, alkaloids, saponins, 
flavonoids, steroids and terpenoids [16-18]. 

In the GC-MS test, as many as 14 active compounds were found in B. macrophylla. These 
compounds consist of the two highest identified main compounds, namely caryophyllene (27.48%) and 
Squalene (32.11%) and other main compounds are humulene, caryophyllene oxide, ethyl hexadecanoate, 
Phytol, diisooctyl phthalate, vitamin E, retinol acetate. , and gamma-himachalene which has potential as 
anticancer, antibacterial, and anti-inflammatory [14, 19]. 

In Silico is described as the use of high-performance computational computational computation to 
analyze a database of many chemical compounds to identify drug candidate probabilities [20-21]. This 
computational process works to find ligands that show a geometric match and an energy match by 



predicting the bond affinity. Through molecular docking, an overview of compound activity can be seen 
without the need to synthesize compounds first [22-23] 

The reference ligand used in this study was TAK-242 or Resatorvid which is a small molecule that 
inhibits TLR4 signaling. This study predicts the anti-inflammatory effect of 10 active compounds from 
Bouea macrophylla Griff which can inhibit inflammation through inhibition of Toll Like Receptors-4 
and provides researchers with information about compounds that may be effective. 

 

2.0 EXPERIMENTATION 

2.1 MATERIALS& METHODOLOGY 

Ligand and Protein Data Sampling 

Molecular docking preparation of the 3D Toll Like Receptors-4 (TLR4) structure obtained from the 
Protein Data Bank website (https://www.rcsb.org/) with PDB ID: 4G8A. The 3D structure of the 
comparison ligand (resatorvid) was obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). The 
protein structures are downloaded in .pdb format while the ligands are downloaded in SDF format. 

Protein and Ligand Preparation 

The B. macrophylla Griff compound used was caryophyllene (CID5281515), humulene (CID 
5281520), 2-Methyl-cis-7,8- epoxynonadecane (CID537313), ethyl palmitate 
(CID21859),phytol(CID5280435), squalene (CID 638072), vitamin E (CID 14985), retinol acetate 
(CID638034),γ-himachalene(CID577062), methyl ricinoleate (CID22821244) and a resatorvid 
comparator ligand (CID 11703255). Protein molecular docking was prepared usingBiovia Discovery 
Studio (Dassault Systèmes BIOVIA, 2021) to remove naturally attached ligands. Meanwhile, the ligands 
were prepared using Open Babel which was integrated into the PyRx 8.0 application (Dallakyan & 
Olson, 2015) to minimize energy and convert to pdb format.t. 

Docking Method Validation 

The way to validate the docking method is by re-docking between the natural ligand 2-acetamido-
2-deoxy-beta-D-glucopyranose (CID 24139) and the TLR4 receptor that has been prepared. Root Mean 
Square Deviation (RMSD) is a parameter in the docking validation process.Validation results between 
natural ligands2-acetamido-2-deoxy-beta-D-glucopyranose(NAG)with TLR4 the RMSD value is 1.6 Å. 
If the RMSD value is ≤ 2 Å then the docking method is valid. The results of the validation show that the 
parameter settings used meet the validation criteria, so that these parameters can be used for the docking 
of the test compounds. 

 

Protein-Ligan Docking Process and Visualization of Docking Results 

Dockingperformed using Autodock Vina integrated on PyRx 8.0. Analysis of virtual prediction 
results and visualization of protein-ligand complexes from docking results was visualized using the 
Biovia Discovery Studio which consists of types of interactions, bond distances, and amino acid 



residues. TLR4 was also docked with a resatorvid comparator ligand to compare the binding affinities 
of the 10 active compounds used in this study. 

Prediction of Drug-Likeness, Pharmacokinetics, and Toxicity of Compounds. 

Lipinski's Five Rulesused to predict drug-likeness. The drug similarity test is carried out through the 
websitewww.molinspiration.com. Toxicity and pharmacokinetic predictions were performed via pkCSM 
(http://biosig.unimelb.edu.au/pkcsm/) and the Protox Online Tools website with the site 
addresshttps://tox-new.charite.de/protox_II/. 

Pharmacokinetic parameters used include Caco-2, Volume Distribution at steady state (VDSs), 
Human Intestinal Absorption (HIA), CYP2D6, and Total Clearance. Parameters used for safety or 
toxicity tests include ames toxicity, Oral Rat Chronic Toxicity (LOAEL), Oral Rat Acute Toxicity 
(LD50), and hepatotoxicity. 

3.0 Conclusions 

Drug-Likeness Test 

Drug-likeness analysis used Lipinski's Rule of Five [23-24]. Named Lipinski's 5th law because the 
parameters involved use multiples of 5 [26]. The lipinski rule is used to determine the physicochemical 
properties of a ligand in determining the hydrophilic or hydrophobic character of a compound to pass 
through the cell membrane by passive diffusion. Compounds have properties similar to drugs if their 
molecular weight is <500 dalton, the log partition coefficient value is P <5, the number of hydrogen 
bond donors is <5, and the number of hydrogen bond acceptors is <10 and the TPSA value is between 
0-140 [27-29]. Table 1 shows that there are several active compounds of Bouea macrophylla Griff that 
do not meet the parameters of the log partition coefficient value P>5 of these compounds, namely 2-
methyl-cis-7,8-epoxynonadecane,ethyl palmitate, Phytol, Squalene and Vitamin E. If the log P value is 
large, then the molecule is hydrophobic. The nature of the molecule that is too hydrophobic will have a 
high level of toxicity because it will stay longer in the lipid bilayer and will be distributed more widely 
in the body so that the selectivity of the binding to the target enzyme is reduced. Molecules that have a 
log p value that is too negative are also not good because they will not be able to penetrate the lipid 
bilayer membrane [30-32]. 

According to the lipinski rule of molecular weight <500 Dalton, all active compounds meet the 
requirements. Active compounds that are <500 Daltons more easily penetrate cell membranes [33-34]. 
The number of hydrogen bond donors and acceptors indicates that the higher the hydrogen bond capacity, 
the energy required for the absorption process is also higher. Based on this theory, all active compounds 
and reference ligands fulfill the requirements for the number of hydrogen bond donors and acceptors, 
meaning that the active compounds do not require high energy so that the absorption process will occur 
more easily [35-36]. 

 

 



Table 1.Prediction of the Physicochemical Properties of the Active Compound Bouea macrophylla 
Griff using the Five Rules Of Lipinski's 

Name Molecular 
Weight Log P Hydrogen 

Donor 
Hydrogen 
Acceptor TPSA Ket 

Caryophyllene 204.35 4,4 0 0 0 Å² Fulfil 
Humulene 204.35 4,7 0 0 0 Å² Fulfil 
2-Methyl-cis-7,8-
epoxynonadecane 296.5 7.2* 0 1 12.5 

Å² Fulfil 

Ethyl Palmitate 284.5 6.52* 0 2 37.3 
Å² Fulfil 

Phytol 296.5 6.9* 1 1 20.2 
Å² Fulfil 

Squalene 410.7 9.6* 0 0 0 Å² Fulfil 
Vitamin E 430.7 9.9* 1 2 0 Å² Fulfil 

Retinol Acetate 328.5 4,9 0 2 26.3 
Å² Fulfil 

γ-himachalene 204.35 4,4 0 0 0 Å² Fulfil 
Methyl 
Ricinoleate 312.5 5.3* 1 3 46.5Å² Fulfil 

Resatorvid 361.8 3,1 1 6 0 Å² Fulfil 
 

The analysis in this study aims to evaluate the toxicity of the tested plant compounds and to select 
which active compounds have the best potential as drug ingredient candidates. Based on the toxicity test 
of the active compound Bouea macrophylla Griff with the parameters AMES Toxicity, Hepatotoxicity, 
LD50, and LOAEL (Table 2) it was found that all active compounds did not cause mutagenic or 
carcinogenic effects, while the results of the hepatotoxicity test showed that Retinol Acetate can cause 
liver damage . Toxicity tests were carried out using a web-based program, namely pkCSM and Protox 
Online Tool to determine whether there is a toxic effect of the test compound [37-38]. Mutagenicity test 
based on the Ames test is a test used to determine levels of reverse mutation of a chemical compound 
that can cause genetic damage and trigger gene mutations [39-40]. To determine the toxicity of a 
chemical, you can do the Oral Rat Acute Toxicity (LD50) Test [40] LD50 is the amount of compound 
given that can cause 50% of the death of the experimental group of animals. Based on the classification 
of Hodge and Sterner, there are six classes of toxicity. Class one with an LD50 value of ≤1mg/kg is 
classified as very toxic, class two with an LD50 value of 1-50 mg/kg which is classified as toxic, class 
three with a value of 50-500 mg/kg and classified as moderately toxic, class four is mildly toxic with the 
LD50 value is 500-5000 mg/kg, the fifth grade is practically non-toxic with an LD50 value of 5-15 g 
and the last is class 6 which is relatively harmless with an LD50 value ≥15 g [42-45]. Table 3 shows the 
results of the oral toxicity test in rats (LD50). It can be seen that the active compound B. macrophylla 
Griff has an LD50 value ranging from 2,000 to 16,000 mg/kg. Based on the theory of toxicity class 
hodge and sterner, there are 6 classes of toxicity where the active compound that has the highest LD50 
level is methyl ricinoleate with a toxicity prediction value of 16,000 mg/kg and belongs to class 6 toxicity 
which is relatively harmless with a prediction accuracy of 72.9%. 



Table 2.Prediction of the Toxicity of the Active Compound Bouea macrophylla Griff Using the 
pkCSM Website 

Ligand AMES 
Toxicity Hepatotoxicity LOAEL(log 

mg/kg_bw/day) 
Caryophyllene No No 1.416 
Humulene No No 1,336 
2-Methyl-cis-7,8- 
epoxynonadecane No No 0.991 

Ethyl Palmitate No No 3,313 
Phytol No No 1,043 
Squalene No No 0.946 
Vitamin E No No 1,987 
Retinol Acetate No Yes 2,276 
γ-himachalene No No 1,346 
Methyl Ricinoleate No No 2,701 
Resatorvid No No 1,043 

 

Table 3.Prediction of the LD50 Toxicity of the Active Compound Bouea macrophylla Griff Using the 
Protox Online Tools Website

 

 

Pharmacokinetic Analysis 

Pharmacokinetic analysis consisting of Caco-2, Human Intestinal Absorption, VDss, 
CYP2D6, and Total Clearance in this study aims to evaluate the toxicity and pharmacokinetic 
activity of the test compounds and to select which active compounds have the best potential as 
drug candidate materials [46-47]. Caco-2 cells are a parameter of permeability ability used to 
determine the process of drug transfer through epithelial cells in the intestine derived from 
human colon adenocarcinoma with multiple transport pathways with an in vitro model. There 

Ligand LD50 
(mg/kg) 

Toxicity 
Class 

Average 
Similarity(%) 

Prediction 
Accuracy (%) 

Caryophyllene 5,300 5 86.96 70.97 
Humulene 3,650 5 86,36 70.97 
2-Methyl-cis-7,8-
epoxynonadecane 5,000 5 100 100 

Ethyl Palmitate 900 4 100 100 
Phytol 5,000 5 100 100 
Squalene 5,000 5 100 10 0 
Vitamin E 5,000 5 82.25 70.97 
Retinol Acetate 4,100 5 100 100 
γ-himachalene 4,400 5 95.65 72,9 
Methyl Ricinoleate 16,000 6 91.39 72,9 
Resatorvid 2,000 4 35,36 23 



are three categories of Caco-2 cell parameters. The category that has a high permeability of 
compounds is that which has a value of >70 nm/s, the medium category has a value of 4-70 
nm/s while the third category is the one with a low permeability ability which has a value of <4 
nm/s [48-49]. Based on these categories, almost all of the active compounds and ligands tested 
had a value of <4 nm/s, which means their permeability is low. 

The Human Intestinal Absorption (HIA) parameter aims to predict the absorption process 
that occurs in the intestine. The results of the HIA test are the result of the sum of bioavailability 
with absorption which is evaluated from the results of the ratio of excretion through bile, urine 
and feces. HIA has three categories of parameters, namely good, medium and low. The good 
category has an HIA value of 70-100%. The moderate category ranges from 20-70% and the 
low category has a presentation of 0-20% [48, 50]. In Table 4 it can be seen that all active 
compounds have HIA values between 70-100% which are included in the good category. 

The volume that shows the value of a total drug dose that is distributed as a whole is the 
Volume Distribution at Steady States (VDSs). If the VDss value is high, then the distribution 
drug in tissues is more than plasma. A compound is categorized as having a high volume of 
distribution if the Log VDss value is> 0.45 and low if the Log VDss value is <-0.15 [51-52]. 
Based on Table 4, the VDss value of the Bouea macrophylla Griff compound ranges from -
0.578 to 1.617. There are three active compounds that have a VDss value <-0.15 namelyethyl 
palmitate,methyl ricinoleate, and resatorvid which means low volume of distribution. Other 
active compounds that have a log volume distribution value of > 0.45 and are classified as high 
are caryophyllene, humulene, phytol, vitamin E, and γ-imachalene so that it can be concluded 
that the five compoundsThese actives can be distributed uniformly to provide the same 
concentration as in blood plasma. 

 The results of the pharmacokinetic analysis showed that all active compounds and 
reference ligands had no inhibitory effect on CYP2D6. Metabolic reactions in general involve 
oxidation processes. Important enzymes such as cytochrome P450 as detoxification enzymes 
are found in the liver and function to oxidize foreign organic compounds, including drugs. 
Many drugs are inactivated by cytochrome P450, and some drugs can also be activated by P450 
[53-54]. This enzyme has inhibitors such as grapefruit, which can affect drug metabolism so 
that cytochrome P450 enzymes are contraindicated in this study represented by cytochrome 
P2D6 isoforms [55]. CYP2D6 is responsible for the metabolism of most drugs and chemical 
compounds [56-57]. Total Clearances(CLTOT) is used to predict the excretion process of the 
compound. The combination of hepatic clearance (metabolism in the liver and bile) and renal 
clearance (excretion through the kidneys). This is related to bioavailability, and it is important 
to determine the dose level to achieve steady state concentrations [57-59]. Table 4 shows that 
CLTOT values range from 0.11 to 1.791 log mL/min/kg. 

  



Table 4.Pharmacokinetic Prediction of Active CompoundsBouea macrophylla Griff 

Ligand 
Caco-
2(nm. 
sec-1 ) 

Human 
Intestinal 

Absorption(%) 
VDSs(logL/kg) CYP2D6 

Inhibitors 

Total 
Clearances(log 

mL/min/kg) 
Caryophyllene 1.423 94,845 1.617 No 1,088 
Humulene 1,421 94,682 0.505 No 1,282 
2-Methyl-cis-7,8- 
epoxynonadecane 1.226 91,808 0.406 No 1,631 

Ethyl Palmitate 1,572 91,462 -0.578 No 1,678 
Phytol 1.515 90.71 0.468 No 1,686 
Squalene 1.216 90,341 0.411 No 1,791 
Vitamin E 1.345 89,782 0.709 No 0.794 
Retinol Acetate 1.188 94.33 0.408 No 1.503 
γ-himachalene 1.418 94,556 0.648 No 1,093 
Methyl 
Ricinoleate 1.57 91,956 -0.509 No 1.615 

Resatorvid 1.133 91.51 -0.418 No 0.11 
Molecular Docking Analysis of TLR4 with Active Compounds Bouea macrophylla Griff 

Based on the results of molecular docking of the active compound Bouea macrophylla Griff 
with TLR4, there were six compounds whose binding affinity values were lower than the 
reference ligands. The six compounds are retinol acetate -9 kcal/mol, vitamin E -8.9 kcal/mol, 
squalene -8.8 kcal/mol, caryophyllene -8.1 kcal/mol, humulene -7.4 kcal/mol, and γ-
himachalene -7.4 kcal/mol. The active compound whose binding affinity value is lower than 
that of the reference ligand has potential as a drug substance candidate because the binding 
affinity indicates the strength of the bond resulting from the interaction between the receptor 
and the ligand in the form of low energy in the formation of a drug complex. Binding affinity 
analysis was performed to determine the spontaneity of a reaction and the stability of the 
receptor-ligand interaction. Stability between the receptor-ligand is indicated by a low binding 
affinity value. The more negative the binding affinity value, the higher the tendency of the 
ligand and receptor to bond or join [60-62]. 

The docking results were visualized to see the type of interaction and amino acid residues 
formed between the test compound and the receptor. The interaction of the same amino acid 
residues allows contact between the ligand and the receptor so that it has the potential for 
inhibitory activity. The active site indicates that the amino acid residue has an important role in 
forming interactions between the ligand and the receptor such as hydrogen bonds, hydrophobic 
bonds and electrostatic bonds [63-65].  Test ligands with amino acid residues and hydrogen 
bonds that are close to natural ligands show similar types of interactions in this case describe 
similar activities [66-67]. Following are the results of the visualization of 2D, 3D and ligand 
interaction structures from the docking of the active compound Bouea macrophylla Griff with 
TLR4 which has hydrogen bonds. 



 

Figure 1.TLR4-Ethyl Palmitate 

 

Figure 2.TLR4-Vitamin E 

 
Figure 3.TLR4-Methyl Ricinoleate 

 

Table 5. Binding Results of Bouea macrophylla Griff and Comparative Ligands against Toll 
Like Receptors-4 

Compound Affinity 
Bindings Amino Acid Residues Interaction 

Type 

Caryophyllen
e -8,1 

ILE63, VAL135*,ILE46*, ILE63, LEU74, 
ILE94, LEU71, LEU74, LEU146, ILE63, 
TYR65, PHE76*, PHE104, PHE147 

Hydrophobic 

Humulene 
 

-7,4 VAL135*, PHE151* Hydrophobic 

2-Methyl-cis-
7,8- 

-7,1 
PHE104, ILE44, ILE46*, LEU61*, ILE63, 
VAL135*, ILE63, VAL113, ILE32*, VAL48*, 
ILE52*, TYR65, PHE147, PHE151* 

Hydrophobic 



epoxynonade
cane 

Ethyl 
Palmitate -6,7 

SER127, TYR131 Hydrogen 
Bonds 

VAL82, ILE80, ILE153*, LEU54, ILE153*, 
ILE32*, ILE52*, LEU87, PHE126 and 
TYR131 
 

Hydrophobic 

Phytol -7 
ILE46*,VAL48*, LEU61*, VAL135*, ILE44, 
ILE46*, ILE63, TYR65, PHE147 and 
PHE151* 

Hydrophobic 

Squalene -8,8 

LEU61*, LEU78, ILE44, ILE46*, ILE63, 
LEU74, VAL48*, LEU61*, ILE32*, LEU54, 
ILE153*, ILE152*, LEU54, VAL135*, 
TYR65, PHE76*, PHE119*, PHE147, 
PHE151* 

Hydrophobic 

Vitamin E -8,9 
PHE104 Hydrogen 

Bonds 

ILE63, PHE76*, ILE32*, ILE46*, ILE52*, 
LEU61*, PHE151* Hydrophobic 

Retinol 
Acetate -9 

SER441, SER441 Hydrogen 
Bonds 

TYR131, ILE32*, ILE52*, ILE153*, LEU54, 
PHE126, TYR131 Hydrophobic 

γ-
himachalene -7,4 PHE151*, ILE46*, LEU78, VAL135*, 

CYS133, PHE76*, PHE151* Hydrophobic 

Methyl 
Ricinoleate -7 

ILE46*, ILE63, LEU71, ILE94, VAL113, 
ILE117, LEU61*, PHE76*, TYR102, 
PHE104, PHE147 
 

Hydrophobic 

Resatorvid 
(Inhibitor) -7,1 

PHE76, PHE151, ILE32, ILE153, VAL48, 
ILE52, LEU61, PHE119, PHE151, ILE46 
and VAL135. 

Hydrophobic 

Information : 

* : the same amino acid residue as the reference ligand 



The interactions of amino acid residues can be seen in Table 5. Based on the molecular 
docking of the 10 active compounds and one reference ligand, hydrogen bonds and hydrophobic 
bonds are formed. Hydrogen bonds have the shortest distance and are the strongest bonds 
compared to other molecular bonds. This is in accordance with the theory that the bond distance 
between the ligand and the molecule has an important role in determining the strength of the 
bond. Bonds get stronger when the distance is short and also applies to hydrogen bonds where 
the more hydrogen bonds, the more stable the bonds are [64]. Hydrogen bonds can form even 
though the distance between the ligand and the receptor is quite far, therefore hydrogen bonds 
are strong bonds [68]. 

Based on the research results of molecular docking of the active compound of ramania leaf 
extract with TLR4, the hydrophobic bond is the most abundant bond. Hydrophobic bonds are 
bonds that have important strengths in the process of combining non-polar and polar regions of 
drug molecules with non-polar regions of biological receptors [69]. In addition, the presence of 
hydrophobic bonds can increase protein stability by changing hydrophilic amino acids in a 
hydrophobic environment and being able to determine amino acid residues that contribute 
significantly to maintaining protein stability [70]. The hydrophobic bond is a parameter of the 
strength of the interaction between the receptor and the ligand, which is useful in helping to 
maintain the conformation of the binding [71]. 

According to research results, all active compounds have several amino acid residues that are 
similar to inhibitory amino acid residues. The similarity of the amino acid residues from the 
binding of the test ligand to the receptor indicates a similarity in the type of interaction in this 
case describing the similarity of activity [66]. 

 

Conclusion 

The active compound Bouea macrophylla Griff can bind to the TLR4 receptor in silico so that 
it has the potential as an anti-inflammatory drug candidate. Vitamin E is the best compound 
among other compounds because it has a lower binding affinity than the inhibitor, which is –
8.9 kcal/mol, has hydrogen bonds at the PHE104 residue, and has the same seven amino acid 
residues as the inhibitor.
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