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Abstract 
Land cover is an important factor in geographic analysis, ranging from physical geography studies, 
approaches to sustainable planning to environmental analysis. Vegetation analysis according to the 
Indonesian National Standard (SNI 7645:2014) is classified based on density. The vegetation density 
index is divided into 4, namely non-vegetation, bare, medium and high. In the technical aspect to 
obtain information related to vegetation, this can be done using remote sensing. Remote sensing uses 
two data to obtain information, namely satellite data and UAV data. This study used UAV data with 
shooting locations in the Liang Anggang Protection Forest in classifying land cover. The method used 
was Convolutional Neural Network with feature extraction used in this study was GLCM. This 
research used the ShuffleNet v2 architecture on the CNN method. The findings of this study used two 
models, namely the CNN model without the GLCM process and compared to the CNN model with 
the addition of the GLCM process, resulting in a comparison that was quite far from the accuracy 
value obtained. The CNN model obtained an accuracy value of 80%, while the CNN model with 
GLCM using segmentation was 49.9% and without segmentation was 44.53%. 
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I. INTRODUCTION 

Peatland management in Indonesia has many 
challenges, due to peatland disaster, as flood and 
wildfire. Wildfire caused by human action is the 
biggest one. Many wildfires in Indonesia as 
intentional fires as part of residential 
developments. It is lead to change land cover.  
Land cover schange as one of internal factor as 
hydrological respon. From physical geography 
studies to approaches to sustainable planning to 
environmental analysis, land cover is an important 
factor in geographic analysis, especially in 
disaster mitigation in peatland. Environmental 
analysis needs surface vegetation-based land 
cover information [1]. The entire plant of an area 
that serves as a land cover is referred to as 
vegetation. Vegetation is the entire plant of an area 
that serves as a land cover. According to the 
Indonesian National Standard [2], vegetation 
analysis is classified based on density. Non-
vegetation, bare, medium, and high vegetation 
density indexes are used [2]. In addition to 
determining the level of vegetation density on land 
cover, it is important to be able to distinguish 
vegetation density in the form of an image, which 
makes data processing easier. N.A. Harahap 
conducted research which provides an image of 
the classification of vegetation density classes 
based on the images shown in Figure 1.1. 

 
 
 
 
 
 

 
Figure 1. (a) Non Vegetation, (b) Bare Vegetation, (c) 

Medium Vegetation, (d) High Vegetation 
 
Vegetation analysis is one method for studying 

the arrangement and composition of vegetation in 
terms of plant shape (structure). In terms of 
technology, remote sensing can be used to obtain 
information about vegetation. Remote sensing 
obtains information from two sources: satellite 
data and UAV data. Previous research that used 
remote sensing technology by utilizing satellite 
data resulted in data accuracy ranging from 63% - 
85% using various methods [1], [3]. Because 
satellite data is a traditional format based on 
statistical reporting and sampling surveys, 
determining vegetation density is critical [3]. 

Remote sensing with satellite data has been widely 
used in the identification and classification of land 
cover patterns across a wide geographic coverage, 
but the use of satellite data, which has a high 
operating altitude and is easily influenced by 
weather, clouds, and other external factors, is 
being reconsidered. Remote sensing technology 
can quickly and precisely provide spatial 
information on the earth surface. The object being 
sensed, the sensor for recording the object, and the 
electronic waves emitted by the earth surface are 
the three main components of remote sensing.  

Remote sensing technology can quickly and 
precisely provide spatial information on the earth 
surface. The object being sensed, the sensor for 
recording the object, and the electronic waves 
emitted by the earth surface are the three main 
components of remote sensing. As technology 
advances, remote sensing facilities such as the 
Unmanned Aerial Vehicle (UAV) become more 
practical and easier to implement. The emergence 
of UAV raises significant potential as a tool for 
environmental and ecological analysis, such as 
monitoring agricultural land, forest fires, arctic 
lichen distribution, and mapping of mangrove 
forests. The generation of spatial information 
based on aerial image data using drones has 
enormous potential for the advancement of remote 
sensing technology, such as area classification. 
The benefits of using a UAV include faster and 
more flexible data acquisition, results that are 
more real-time, and low and light operating and 
maintenance costs. Apart from the ability to fly 
through clouds and produce cloud-free images, it 
differs from satellite imagery, which is heavily 
influenced by atmospheric conditions. UAV 
imagery has a high resolution when compared to 
satellite imagery, reaching a spatial resolution of 
less than 1 cm, which is much more detailed than 
satellite (30cm) and aircraft (10cm) imagery [1]. 
Optimal results that can be obtained from the use 
of UAV in object classification and the 
appropriate method for processing data with UAV 
imagery.  

Before being processed in a classification 
model, image data requires feature extraction 
techniques to determine certain characteristics 
possessed by images to aid in object identification 
(image analysis) [1], [4], [5]. The resulting 
features will be selected first in the feature 
extraction process to obtain features with a high 
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influence as a reference for the classification 
process. The function of feature extraction is to 
extract the necessary information from an image. 
Shape, colour, and texture extraction are the three 
types of feature extraction. Images with a slight 
colour can benefit from feature extraction using 
the Gray Level Co-occurrence Matrix (GLCM) 
method, which is a second level statistical method 
that computes the frequency of pairs of pixels in 
an image that have the same gray level and applies 
the additional knowledge obtained through pixel 
spatial relationships [6]. Using edge information, 
the co-occurrence matrix embeds the distribution 
of grayscale transitions. The majority of the 
information required to calculate the threshold 
value in the GLCM technique is straightforward 
but efficient [7]. S. Karthikeyan and N. 
Rengarajan use the GLCM algorithm with up to 
95% accuracy. Previous research has compared 
GLCM feature extraction to LBP, MI, CLBP, 
LBGLCM, and GLRLM, with the accuracy results 
proving that using feature extraction in 
classification using GLCM produces better results 
than using other methods. GLCM accuracy results 
range from 70% to 93% [7]–[9].   

Visual interpretation methods, pixel-based 
digital classification methods, and object-based 
classification methods are used in land cover 
mapping based on remote sensing imagery. Land 
cover analysis researchers are interested in the use 
of data mining methods. Land classification, 
Machine Learning, and Deep Learning have all 
made extensive use of classification methods. 
Deep learning, which is included in the supervised 
classification, is developed and produced by the 
machine learning method. Deep learning methods 
are widely used in satellite image analysis because 
they are powerful and intelligent in image 
processing. Deep learning methods are still 
evolving, with the Convolutional Neural Network 
(CNN) deep learning method producing the most 
significant results in image recognition to date. 
Deep Learning has demonstrated that this 
architecture, particularly CNN, can learn human-
level solutions to specific visual tasks. This 
method has been used extensively in remote 
sensing image analysis tasks such as object 
detection in images, image recording, scene 
classification, segmentation, object-based image 
analysis, and land use and land cover classification 
[10]. CNN is one of the most recent Deep 
Learning methods to emerge. This method has 
been shown to be useful for pattern recognition 
and object classification [1]. Previous research 
using the CNN method to classify land cover 
yielded satisfactory accuracy results ranging from 
73% to 98% [1], [10], [11]  

CNN has a variety of popular architectures, 
including LeNet5 (1998), AlexNet (2012), ZFNet 
(2013), GoogleNet (2014), ResNet (2015), 
FractalNet (2016), ShuffleNet (2018), and others. 
Previous research has compared the use of 
architecture on CNN in the field of classification. 
The compared architectures demonstrate the 
advantage and disadvantage of each, for 
architectures that are widely used in the field of 
image classification and are relatively new, and 
have been compared with several other 
architectures, ShuffleNet. ShuffleNet is a very 
efficient CNN architecture with fast accuracy. 
Research that has used the ShuffleNet architecture 
and has made comparisons with other 
architectures such as GoogleNet, DenseNet, 
MobileNet, Xception, IGCV2, EffNet V1, EffNet 
V2, IoTNet-3-5 and ResNet50 in the classification 
process states that the ShuffleNet architecture 
increases the accuracy of 82% - 98% with less 
memory usage and faster processing time [12]–
[16]. 

The CNN method is widely used in the field of 
deep learning to conduct land cover classification. 
GLCM was used to extract features in this study. 
The ShuffleNet architecture on the CNN method 
will be used in this study. This research was 
carried out for a month in the Liang Anggang 
Protected Forest area, Banjarbaru block 1 area, 
with targeted data collection. The location for this 
study was chosen based on observations made 
during the observation and survey of the block 1 
area, where, according to the 2017 Provincial 
Forestry Office, an area of 479 hectares of block 1 
area is filled with land such as agriculture, 
plantations, roads and settlements, as well as 494 
hectares of forest. In addition to being a peatland, 
the research site, particularly in block 1, meets the 
characteristics and suitability of the needs in 
collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 
and high) that can be seen with the naked eye 
during observations and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. The 
objective of this study was to determine the results 
of the best deep learning methods in land cover 
classification based on vegetation density. This 
study created research updates by combining 
UAV data with shooting locations in the Liang 
Anggang Protected Forest. 
 

II. RESEARCH METHODOLOGY 
 



 

A. Research Site 
This study was being conducted in the Liang 

Anggang Protected Forest in Banjarbaru City, 
South Kalimantan. This is the Tangi Timber 
KPHP's management area. The protected forest 
designation is based on Minister of Forestry 
Decree No. 672/Kpts-II/1991 and Kep Menhut No. 
434/Kpts-II/1996 with a total area of 2,250 
hectares divided into two protected forest blocks, 
namely block 1 covering an area of 960 hectares 
including Liang Anggang sub-district, Banjarbaru 
and block 2 covering an area of 1290 hectares 
including the Gambut District, Banjar Regency. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Map of the Liang Anggang Protected Forest Area 

The study lasted one month, from November to 
December 2021, and focused on the Warning Area 
(lock signal area from the airport) that caused the 
drone to be unable to operate. 

 
B. Research Procedure 

This research was conducted in the Liang 
Anggang Protected Forest area by conducting a 
field survey to assess the state of the vegetation or 
areas within the Protected Forest area. This study 
collected image data using drones to capture 
images from a height of 20 meters over a one-
month period. Land was assigned coordinates 
based on the goal of image data collection using 
Google Earth Pro tools. Land with coordinates 
was exported in .KML format and later imported 
into DroneDeploy (website) to make directing 
drone flights on land easier. Then, the imported 
KML file was configured for flight altitude and 2D 
or 3D image capture. An illustration of image 
capture is shown in Figure 3. 

 
 
 
 
 
 
 
 

 
Figure 3. Illustration of Image Data Retrieval 

 
Before proceeding to the next stage, image data 

that has been recorded and stored according to 
predetermined coordinate points was processed. 
To facilitate operation with the method that was 
used later, image data was labelled. The CNN 
method was used in this study. Image data that has 
already been processed was then fed into the 
classification process using the method used in 
this study. Image data was classified using each 
method, and the accuracy value was calculated 
using tools. The obtained accuracy value was then 
analysed and compared to draw conclusions. The 
flow of this research is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Diagram of Research Procedure 
 

C. Feature Extraction 
The purposes of feature extraction is to obtain 

the feature value of an object based on an image 
pixel intensity value relationship. The feature 
extraction process goal is to extract a special 
(unique) value from each image [17], [18]. This 
study used GLCM feature extraction with three 
primary features: correlation, homogeneity, and 
contrast. The feature extraction results created a 
GLCM version of the image using these three 
features. Figure 5 shows an illustration or 
description of the texture extraction results 
obtained with the GLCM feature. 

 
 
 
 
 
 
 



 

 
 

Figure 5. Result of Feature Extraction 
 
The texture of an image was sought after by 

feature extracted images. The training data set 
consisted of 2400 images divided into three 
classes. This study applied 5 GLCM features to 
convert an input 2D image/image to an output 2D 
image/image to a gray level with a gray range of 0 
to 1. The purpose of this step was to use gray level 
scaling to reduce the image volume to a more 
manageable size. Scaling to a grayscale level acted 
as a filter, removing some of the noise (de Mello, 
2013). Figure 6 shows the scenario of the feature 
extraction test results with GLCM. 

 
 
 
 
 
 

 
Figure 6. Ilustration of GLCM-CNN Feature Extraction 
 

D. Classification of Convolutional Neural 
Networks 
Only CNN neural networks can process grid 

structure data, such as two-dimensional images. 
The convolution layer is a linear algebra operation 
that generates a matrix of filters in the image to be 
processed. A convolution layer process is one of 
the many types of layers that can exist in a network. 
The image entered into the CNN classification 
model created during the fit model stage yielded 
an output calculated using the optimized weight. 
As a result, the classification model created should 
be able to classify the testing data into the correct 
class. This test was performed to calculate the 
accuracy value in the classification model that has 
been created. Figure 7 shows an illustration of the 
CNN classification process. 

 
 
 
 
 
 

 
Figure 7. Illustration of CNN Classification Process 
 
Figure 8 shows the classification flow using the 

CNN method 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Stage of CNN Classification 
 

E. Classification Analysis 
The results of the UAV image classification 

using two methods were analysed and the level of 
accuracy was determined. This study applied 
accuracy testing with a confusion matrix in the 
form of overall accuracy (OA) and Kappa 
coefficient accuracy. Proceed with the analysis of 
the CNN method classification results to obtain 
accurate results from the use of the CNN method 
in land cover classification. 

 

III. TESTING 
 

A. Image Dataset 
The dataset used in this study was divided into 

three categories: bare, medium, and high. The total 
number of images collected was 3000, with 1000 
for each class type category. The classification of 
these three classes was based on the condition of 
the Liang Anggang Protected Forest where the 
research location, particularly block 1, meets the 
characteristics and suitability of the needs in 
collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 



 

and high) that can be seen with the naked eye 
during observation and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. Table 1 
shows the results of categorizing three classes of 
vegetation density in terms of images based on the 
division of the available dataset [19]. 

 
 

Table 1. 
Image of Vegetation Density 

 
B. Image Cropping  

Because the image data obtained with the 
drone was too large, the data was resized by 
cutting the image and selecting specific areas to be 
used as training data. Cropped image data aimed 
to facilitate the classification process, did not take 
up much space or memory, and the classification 
process was light, so it did not require a long time 
in the classification process later. The image data 
was cropped to 256 x 256 pixels, reducing the 
image size to 159 KB. The cropped image data 
was classified into three types: bare, medium, and 
dense/high [20], [21]. Figure 9 shows the cropping 
results of image data. 

 
 

 
 
 

 
Figure 9. Image Data Cropping 

 

C. Segmentation 
Image segmentation was used to distinguish 

between objects and backgrounds [22], [23]. The 
separation process was designed to make 
classification and calculations easier. The image 
segmentation process was based on the difference 
in the image grayscale. To convert a colour image 
with r, g, and b matrix values into a grayscale 
image. The segmentation method, namely 
thresholding, can be used to change the colour 
image. The most basic method for segmenting was 
image development or image thresholding (de 
Mello, 2013). Thresholding was used to change 

the number of gray degrees in an image in order to 
create a binary image with pixel intensity values 
of 0 or 1. 

 
D. Feature Extraction (GLCM) 

In this study, GLCM was used for feature 
extraction, with three main features used: 
correlation, homogeneity, and contrast. This 
method was used to classify images, recognize 
textures, segment them, recognize objects, and 
analyse their colours. In the neighbourhood 
between pixels, GLCM had four angular 
directions: 0°, 45°, 90°, and 135°. When the angle 
was 0°, the pixel density was calculated by 
moving one distance to the right. Pixel adjacency 
was calculated using a 45° angle and 1 pixel 
distance to the top right. The angle is 90°, and the 
pixel density was calculated by a 1 pixel distance 
on top. A 135° angle was used, and neighbouring 
pixels were calculated by moving one pixel up 
[24]. The gray level of pixels was compared based 
on angle or neighbours at 0°, 45°, 90°, and 135° in 
this study. The feature extraction process was also 
compared the results of previously segmented 
images to those that have not been segmented. 

 

IV. FINDINGS 
 

A. Result of CNN Model 
The formation of network architecture in the 

CNN algorithm can affect the results of model 
accuracy. In order to produce an optimal model, 
network architecture was used during the training 
process. This study applied an input image with a 
resolution of 256x256x3, with the aim for 
reducing image size so that the classification 
process took as little time as possible. This study 
applied the second version of the ShuffleNet 
architecture, which included one convolutional 
layer (Conv5), three stages (consisting of 
convolutional and shuffle units), one pooling layer 
(using Maxpool), and fc. The input image in the 
shuffleNet v2 model was 256 x 256 in size. The 
convolution and maximum pooling layers were 
added to the model’s initial position to reduce the 

size of the feature graph. The convolution layer 
and pooling layer were replaced at the initial 
position by the convolutional layer (Conv1) with 
a 3 x 3 kernel, and the BN layer was added after 
Conv 1 and Conv 5. Figure 10 shows the flow of 
the proposed model. 
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Figure 10. Flow of Model Shuffle Net v2 Model 
 

The results of training and testing accuracy 
were obtained after going through several 
processes in the CNN algorithm. The value for 
training accuracy can be found in the "Accuracy" 
column, while the value for testing accuracy can 
be found in the "Validation Accuracy" column. 
Accuracy was the value calculated by calculating 
the accuracy of the training dataset and model 
predictions. Validation Accuracy is the value 
calculated by calculating the accuracy of the 
validation dataset and predictions from the model 
using validation dataset input data. This procedure 
used a total of 50 epochs. Previously, epoch 
comparisons were performed to determine the 
accuracy and validation results of each training 
with a different number of epochs. This epoch 
comparison was intended to find the best model. 
The number of epochs compared ranges between 
25 and 100 [25]. The use of epoch had a significant 
impact on the resulting accuracy. Because epoch 
can improve accuracy and the resulting accuracy 
was stable, it was critical to use the correct epoch 
in training data to achieve maximum accuracy. 
The table below compares training results based 
on the number of epochs. 

 
Table 2. 
Comparison of Epoch 

Epoc
h 

Accurac
y 

Loss 

Accurac
y 

Validatio
n 

Validatio
n Loss 

Tim
e 

25 97.46% 
0.068

6 
71% 1.9176 

20mi
nute  

50 98.75% 
0.035

8 
81.33% 1.2536 

56mi
nute 

75 99.08% 
0.027

9 
74% 2.4516 

1hou
r 

32m
inute 

100 99.29% 0.021
8 

74.17% 1.1251 

2hou
r 

20m
inute 

 
The training model's accuracy with a total of 50 

epochs is 98.75% with a loss of 0.0218. The 
validation accuracy value for the 50 epochs is 
81.33%, which is higher than the other epochs. 
According to the table, the closer to the highest 
epoch, the higher the accuracy obtained from the 
testing results. However, if more than 100 epochs 
are added, the accuracy value decreases because 
too many epochs can also affect the large number 
of datasets. The testing procedure used training 
data consisting of 2400 image data and 600 image 

data for each class, as well as 200 image data for 
each class. Table 3 shows the results of the 
confusion matrix. 

 
 
 
 
 
 
 

Table 3. 
Confusion Matrix 

 
Based on the results of table 3, the model's 

predictions on the new data testing data show 
promising results. Although the prediction of the 
Bare class is correctly classified as the Bare class, 
up to four miss classifications from the Bare image 
data input are classified as the High class. While 
the Medium class prediction is correctly classified 
as the Medium class, as many as 9 miss 
classifications from the input image data are 
classified as the Bare class. In addition, up to 88 
misclassifications of input image data are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 8 
miss classifications from the High image data 
input are classified as the Bare class. As many as 
12 misclassifications of input image data were 
classified as Medium. The overall accuracy of the 
matrix and kappa accuracy are calculated as 
follows: 

 
Overall Accuracy = 469/600 = 80% 
Kappa = 70% 

 
So, the model's accuracy with a 256x256 input 

image and a total of 600 image data obtained an 
accuracy value of 80% and a kappa accuracy of 
70%. 

 
B. Result of CNN Model with GLCM 

The addition of three GLCM features, namely 
contrast, homogeneity, and correlation, is the 
result of the next training model. The procedure 
involved extracting 3,000 GLCM result image 
data and producing 9,000 image data that was 

Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 209 0 4 

Medium 9 92 88 

High 8 12 178 



 

processed by CNN. This study also compared the 
direction angles of 0°, 45°, 90°, and 135° to extract 
images per angle. The GLCM process used a total 
of 27,000 image data through the segmentation 
stage. This was done to determine how well each 
feature performed in the image classification 
process. 

For the GLCM process with CNN going 
through the segmentation stage, the results of data 
training with the CNN model and each GLCM 
feature by going through the segmentation stage 
with 9,000 data for each angle, can be seen at an 
angle of 135° getting the highest validation 
accuracy value from other angles, namely 60.11% 
with a value validation loss of 0.8460. For each 
feature, this training procedure applied a total of 
50 epochs. This training process took 
approximately 20-30 minutes per corner. Table 5 
shows the results of the GLCM training data per 
corner. 

 
Table 4. 
Comparison of Training Per Angle 

 

The training data is 9,000 images, and the test 
data is 1,800 images, with 3,000 images in each 
class. Table 5 shows the confusion matrix results 
for the CNN model process with GLCM that went 
through the segmentation stage. 

Table 5. 
Confusion Matrix 

 

According to the results in table 5, the model's 
prediction results on new data testing data are poor. 
Although the prediction of the Bare class is correct, 
as many as 92 miss classifications from the Bare 
image data input are classified as Medium. In 

addition, up to 83 miss classifications from the 
Bare image data input are classified as High. 
While the Medium class prediction was correctly 
classified as the Medium class, as many as 54 miss 
classifications from the input image data were 
classified as the Bare class. In addition, 137 
misclassifications of image data input Medium are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 83 
miss classifications from the High image data 
input are classified as the Bare class. In addition, 
218 miss classifications from the High image data 
input are classified as Medium. The overall 
accuracy of the matrix and kappa accuracy are 
calculated as follows:  

 

Overall Accuracy = 1133/1800x100% = 62,99% 

Kappa = 44,37%  

 

So, with an input image of 256x256 pixels and 
a total of 1800 image data, the model produced an 
accuracy value of 62.99% and a kappa accuracy of 
44.37%. 

V. DISCUSSION 
When the CNN model without the GLCM 

process was compared to the CNN model with the 
GLCM process, the comparison was quite far from 
the accuracy values obtained. The CNN model 
achieved an accuracy of 80%, while the CNN 
model with GLCM achieves 62.99% segmentation. 
This showed that the CNN model outperformed 
the GLCM process. According to the findings of 
the analysis, this occurred because the gray level 
in the image was leveled during the GLCM 
process, resulting in white and black colors in the 
image. The colours in the original image changed 
to white and black, resulting in a classification 
error. The GLCM process rendered the image 
colourless and rendered the entire image black.  

During the testing of new data, there was a 
misclassification caused by nearly identical 
vegetation types. The input data for the CNN 
model was original image data with different types 
of vegetation, but based on the researcher's 
analysis, even though the texture between medium 
and high vegetation was different, the CNN model 
still had difficulty distinguishing and recognizing 
medium and high classes if the data 
simultaneously has the characteristics of an image 
that was filled with vegetation even though the 
type and texture of the vegetation was different. 
The CNN model with the GLCM method had a lot 
of misclassifications. The first reason was that the 
original image's colour had changed, making it 

Angle 
Accu
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Loss 
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Time 

0° 
95.24

% 
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% 
0.609

6 
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94.99
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6 
31 mnt 
20 scnd 
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31 mnt 
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135° 
96.26

% 
0.117

6 
60.11

% 
0.846

0 
31 mnt 
11 scnd Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 407 92 83 

Medium 54 419 137 

High 83 218 307 



 

difficult for the model to distinguish between 
classes. The second issue was that the type and 
texture of the vegetation were not visible in the 
image, so when predicting with the CNN and 
GLCM models on prototypes, the bare class data 
was read as medium class. High class reads as 
medium class. 
 

VI. CONCLUSION 
The conclusion is that comparing the CNN 

model without the GLCM process to the CNN 
model with the GLCM process produces a 
comparison that is quite far from the accuracy 
value obtained. The CNN model achieves an 
accuracy of 80%, while the CNN model with 
GLCM achieves 62.99% segmentation. This 
demonstrates that the CNN model outperforms the 
GLCM process in land cover classification. This 
demonstrates that the image processing process 
has a significant impact on the classification and 
prediction stages. 
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Abstract 
Land cover or vegetation density in tropical peatland is an essential factor in hydrology response in 
geographic analysis, ranging from physical geography studies and approaches to sustainable 
planning to environmental research. Vegetation analysis according to the Indonesian National 
Standard (SNI 7645:2014), is classified based on density. The vegetation density index is divided into 
4, namely non-vegetation, bare, medium, and high. In the technical aspect, to obtain information 
related to vegetation, this can be done using remote sensing. Remote sensing uses two data to obtain 
information, namely satellite data and UAV data. This study used UAV data with shooting locations 
in the Liang Anggang Protection Forest in classifying land cover. The method used was 
Convolutional Neural Network with feature extraction used in this study was GLCM. This research 
used the ShuffleNet v2 architecture on the CNN method. The findings of this study used two models, 
namely the CNN model without the GLCM process and compared to the CNN model with the 
addition of the GLCM process, resulting in a comparison that was quite far from the accuracy value 
obtained. The CNN model obtained an accuracy value of 80%, while the CNN model with GLCM 
using segmentation was 49.9%, and without segmentation was 44.53%. 
 

Keywords: Tropical Peatland, Vegetation Density, Classification; class; CNN; GLCM; accuracy. 
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I. INTRODUCTION 

Peatland management in Indonesia has many 
challenges due to peatland disasters [1], such as 
floods and wildfires. Wildfire caused by human 
action is the biggest one. Many wildfires in 
Indonesia as intentional fires as part of residential 
developments [2]. It is leads to changes land cover 
as changes in vegetation density in tropical 
peatland. Land cover or vegetation density change 
is one of the internal factors of hydrological 
response. From physical geography studies to 
approaches to sustainable planning to 
environmental analysis, land cover is an essential 
factor in the geographic analysis, especially in 
disaster mitigation in tropical peatlands. 
Environmental analysis needs surface vegetation-
based land cover information [3]. The entire plant 
of an area that serves as a land cover is referred to 
as vegetation. Vegetation is the entire plant of an 
area that serves as a land cover. According to the 
Indonesian National Standard [4], vegetation 
analysis is classified based on density. Non-
vegetation, bare, medium, and high vegetation 
density indexes are used [4]. In addition to 
determining the level of vegetation density, it is 
important to be able to distinguish vegetation 
density in the form of an image, which makes data 
processing easier. N.A. Harahap (year) conducted 
research that provides an image of the 
classification of vegetation density classes based 
on the images shown in Figure 1.1. 

 
 
 
 
 
 

 
Figure 1. (a) Non Vegetation, (b) Bare Vegetation, (c) 

Medium Vegetation, (d) High Vegetation 
 
Vegetation density analysis in tropical peatland 

is one method for studying the arrangement and 
composition of vegetation in terms of plant shape 
(structure). In terms of technology, remote sensing 
can be used to obtain information about vegetation. 
Remote sensing obtains information from two 
sources: satellite data and UAV data. Previous 
research that used remote sensing technology by 
utilizing satellite data resulted in data accuracy 
ranging from 63% - 85% using various methods 
[3], [5]. Because satellite data is a traditional 

format based on statistical reporting and sampling 
surveys, determining vegetation density is critical 
[5]. Remote sensing with satellite data has been 
widely used in the identification and classification 
of land cover patterns across a wide geographic 
coverage, but the use of satellite data, which has a 
high operating altitude and is easily influenced by 
weather, clouds, and other external factors, is 
being reconsidered. Remote sensing technology 
can quickly and precisely provide spatial 
information on the earth surface. The object being 
sensed, the sensor for recording the object, and the 
electronic waves emitted by the earth surface are 
the three main components of remote sensing.  

Remote sensing technology can quickly and 
precisely provide spatial information on the earth 
surface. The object being sensed, the sensor for 
recording the object, and the electronic waves 
emitted by the earth surface are the three main 
components of remote sensing. As technology 
advances, remote sensing facilities such as the 
Unmanned Aerial Vehicle (UAV) become more 
practical and easier to implement. The emergence 
of UAV raises significant potential as a tool for 
environmental and ecological analysis, such as 
monitoring agricultural land, forest fires, arctic 
lichen distribution, and mapping of mangrove 
forests. The generation of spatial information 
based on aerial image data using drones has 
enormous potential for the advancement of remote 
sensing technology, such as area classification. 
The benefits of using a UAV include faster and 
more flexible data acquisition, results that are 
more real-time, and low and light operating and 
maintenance costs. Apart from the ability to fly 
through clouds and produce cloud-free images, it 
differs from satellite imagery, which is heavily 
influenced by atmospheric conditions. UAV 
imagery has a high resolution when compared to 
satellite imagery, reaching a spatial resolution of 
less than 1 cm, which is much more detailed than 
satellite (30cm) and aircraft (10cm) imagery [3]. 
Optimal results that can be obtained from the use 
of UAV in object classification and the 
appropriate method for processing data with UAV 
imagery.  

Before being processed in a classification 
model, image data requires feature extraction 
techniques to determine certain characteristics 
possessed by images to aid in object identification 
(image analysis) [3], [6], [7]. The resulting 

(a) 

 

(b) 

 

(c) 

 

(d) 

 



 

features will be selected first in the feature 
extraction process to obtain features with a high 
influence as a reference for the classification 
process. The function of feature extraction is to 
extract the necessary information from an image. 
Shape, colour, and texture extraction are the three 
types of feature extraction. Images with a slight 
colour can benefit from feature extraction using 
the Gray Level Co-occurrence Matrix (GLCM) 
method, which is a second level statistical method 
that computes the frequency of pairs of pixels in 
an image that have the same gray level and applies 
the additional knowledge obtained through pixel 
spatial relationships [8]. Using edge information, 
the co-occurrence matrix embeds the distribution 
of grayscale transitions. The majority of the 
information required to calculate the threshold 
value in the GLCM technique is straightforward 
but efficient [9]. S. Karthikeyan and N. 
Rengarajan use the GLCM algorithm with up to 
95% accuracy. Previous research has compared 
GLCM feature extraction to LBP, MI, CLBP, 
LBGLCM, and GLRLM, with the accuracy results 
proving that using feature extraction in 
classification using GLCM produces better results 
than using other methods. GLCM accuracy results 
range from 70% to 93% [9]–[11].   

Visual interpretation methods, pixel-based 
digital classification methods, and object-based 
classification methods are used in land cover 
mapping based on remote sensing imagery. Land 
cover analysis researchers are interested in the use 
of data mining methods. Land classification, 
Machine Learning, and Deep Learning have all 
made extensive use of classification methods. 
Deep learning, which is included in the supervised 
classification, is developed and produced by the 
machine learning method. Deep learning methods 
are widely used in satellite image analysis because 
they are powerful and intelligent in image 
processing. Deep learning methods are still 
evolving, with the Convolutional Neural Network 
(CNN) deep learning method producing the most 
significant results in image recognition to date. 
Deep Learning has demonstrated that this 
architecture, particularly CNN, can learn human-
level solutions to specific visual tasks. This 
method has been used extensively in remote 
sensing image analysis tasks such as object 
detection in images, image recording, scene 
classification, segmentation, object-based image 
analysis, and land use and land cover classification 
[12]. CNN is one of the most recent Deep 
Learning methods to emerge. This method has 
been shown to be useful for pattern recognition 
and object classification [3]. Previous research 
using the CNN method to classify land cover 

yielded satisfactory accuracy results ranging from 
73% to 98% [3], [12], [13]  

CNN has a variety of popular architectures, 
including LeNet5 (1998), AlexNet (2012), ZFNet 
(2013), GoogleNet (2014), ResNet (2015), 
FractalNet (2016), ShuffleNet (2018), and others. 
Previous research has compared the use of 
architecture on CNN in the field of classification. 
The compared architectures demonstrate the 
advantage and disadvantage of each, for 
architectures that are widely used in the field of 
image classification and are relatively new, and 
have been compared with several other 
architectures, ShuffleNet. ShuffleNet is a very 
efficient CNN architecture with fast accuracy. 
Research that has used the ShuffleNet architecture 
and has made comparisons with other 
architectures such as GoogleNet, DenseNet, 
MobileNet, Xception, IGCV2, EffNet V1, EffNet 
V2, IoTNet-3-5 and ResNet50 in the classification 
process states that the ShuffleNet architecture 
increases the accuracy of 82% - 98% with less 
memory usage and faster processing time [14]–
[18]. 

The CNN method is widely used in the field of 
deep learning to conduct land cover classification. 
GLCM was used to extract features in this study. 
The ShuffleNet architecture on the CNN method 
will be used in this study. This research was 
carried out for a month in the Liang Anggang 
Protected Forest area, Banjarbaru block 1 area, 
with targeted data collection. The location for this 
study was chosen based on observations made 
during the observation and survey of the block 1 
area, where, according to the 2017 Provincial 
Forestry Office, an area of 479 hectares of block 1 
area is filled with land such as agriculture, 
plantations, roads and settlements, as well as 494 
hectares of forest. In addition to being a peatland, 
the research site, particularly in block 1, meets the 
characteristics and suitability of the needs in 
collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 
and high) that can be seen with the naked eye 
during observations and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. The 
objective of this study was to determine the results 
of the best deep learning methods in land cover 
classification based on vegetation density. This 
study created research updates by combining 
UAV data with shooting locations in the Liang 
Anggang Protected Forest. 
 

II. RESEARCH METHODOLOGY 
 



 

A. Research Site 
This study was being conducted in the Liang 

Anggang Protected Forest in Banjarbaru City as 
the biggest wildfire in tropical peatland in South 
Kalimantan. This is the Tangi Timber KPHP's 
management area. The protected forest 
designation is based on Minister of Forestry 
Decree No. 672/Kpts-II/1991 and Kep Menhut No. 
434/Kpts-II/1996 with a total area of 2,250 
hectares divided into two protected forest blocks, 
namely block 1 covering an area of 960 hectares 
including Liang Anggang sub-district, Banjarbaru 
and block 2 covering an area of 1290 hectares 
including the Gambut District, Banjar Regency. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Map of the Liang Anggang Protected Forest Area 

 
The study lasted one month, from November to 

December 2021, and focused on the Warning Area 
(lock signal area from the airport) that caused the 
drone to be unable to operate. 

 
B. Research Procedure 

This research was conducted in the Liang 
Anggang Protected Forest area by conducting a 
field survey to assess the state of the vegetation or 
areas within the Protected Forest area. This study 
collected image data using drones to capture 
images from a height of 20 meters over a one-
month period. Land was assigned coordinates 
based on the goal of image data collection using 
Google Earth Pro tools. Land with coordinates 
was exported in .KML format and later imported 
into DroneDeploy (website) to make directing 
drone flights on land easier. Then, the imported 
KML file was configured for flight altitude and 2D 
or 3D image capture. An illustration of image 
capture is shown in Figure 3. 

 
 
 
 
 
 
 

 
 

Figure 3. Illustration of Image Data Retrieval 
 
Before proceeding to the next stage, image data 

that has been recorded and stored according to 
predetermined coordinate points was processed. 
To facilitate operation with the method that was 
used later, image data was labelled. The CNN 
method was used in this study. Image data that has 
already been processed was then fed into the 
classification process using the method used in 
this study. Image data was classified using each 
method, and the accuracy value was calculated 
using tools. The obtained accuracy value was then 
analysed and compared to draw conclusions. The 
flow of this research is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Diagram of Research Procedure 
 

C. Feature Extraction 
The purposes of feature extraction is to obtain 

the feature value of an object based on an image 
pixel intensity value relationship. The feature 
extraction process goal is to extract a special 
(unique) value from each image [19], [20]. This 
study used GLCM feature extraction with three 
primary features: correlation, homogeneity, and 
contrast. The feature extraction results created a 
GLCM version of the image using these three 
features. Figure 5 shows an illustration or 
description of the texture extraction results 
obtained with the GLCM feature. 

 
 
 
 
 



 

 
 
 

 
Figure 5. Result of Feature Extraction 

 
The texture of an image was sought after by 

feature extracted images. The training data set 
consisted of 2400 images divided into three 
classes. This study applied 5 GLCM features to 
convert an input 2D image/image to an output 2D 
image/image to a gray level with a gray range of 0 
to 1. The purpose of this step was to use gray level 
scaling to reduce the image volume to a more 
manageable size. Scaling to a grayscale level acted 
as a filter, removing some of the noise (de Mello, 
2013). Figure 6 shows the scenario of the feature 
extraction test results with GLCM. 

 
 
 
 
 
 

 
Figure 6. Ilustration of GLCM-CNN Feature Extraction 
 

D. Classification of Convolutional Neural 
Networks 
Only CNN neural networks can process grid 

structure data, such as two-dimensional images. 
The convolution layer is a linear algebra operation 
that generates a matrix of filters in the image to be 
processed. A convolution layer process is one of 
the many types of layers that can exist in a network. 
The image entered into the CNN classification 
model created during the fit model stage yielded 
an output calculated using the optimized weight. 
As a result, the classification model created should 
be able to classify the testing data into the correct 
class. This test was performed to calculate the 
accuracy value in the classification model that has 
been created. Figure 7 shows an illustration of the 
CNN classification process. 

 
 
 
 
 
 

 
Figure 7. Illustration of CNN Classification Process 
 
Figure 8 shows the classification flow using the 

CNN method 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Stage of CNN Classification 
 

E. Classification Analysis 
The results of the UAV image classification 

using two methods were analysed and the level of 
accuracy was determined. This study applied 
accuracy testing with a confusion matrix in the 
form of overall accuracy (OA) and Kappa 
coefficient accuracy. Proceed with the analysis of 
the CNN method classification results to obtain 
accurate results from the use of the CNN method 
in land cover classification. 

 

III. TESTING 
 

A. Image Dataset 
The dataset used in this study was divided into 

three categories: bare, medium, and high. The total 
number of images collected was 3000, with 1000 
for each class type category. The classification of 
these three classes was based on the condition of 
the Liang Anggang Protected Forest where the 
research location, particularly block 1, meets the 
characteristics and suitability of the needs in 



 

collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 
and high) that can be seen with the naked eye 
during observation and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. Table 1 
shows the results of categorizing three classes of 
vegetation density in terms of images based on the 
division of the available dataset [21]. 

 
 

Table 1. 
Image of Vegetation Density 

Source:  
 
B. Image Cropping  

Because the image data obtained with the 
drone was too large, the data was resized by 
cutting the image and selecting specific areas to be 
used as training data. Cropped image data aimed 
to facilitate the classification process, did not take 
up much space or memory, and the classification 
process was light, so it did not require a long time 
in the classification process later. The image data 
was cropped to 256 x 256 pixels, reducing the 
image size to 159 KB. The cropped image data 
was classified into three types: bare, medium, and 
dense/high [22], [23]. Figure 9 shows the cropping 
results of image data. 

 
 

 
 
 

 
Figure 9. Image Data Cropping 

 
C. Segmentation 

Image segmentation was used to distinguish 
between objects and backgrounds [24], [25]. The 
separation process was designed to make 
classification and calculations easier. The image 
segmentation process was based on the difference 
in the image grayscale. To convert a colour image 
with r, g, and b matrix values into a grayscale 
image. The segmentation method, namely 
thresholding, can be used to change the colour 

image. The most basic method for segmenting was 
image development or image thresholding (de 
Mello, 2013). Thresholding was used to change 
the number of gray degrees in an image in order to 
create a binary image with pixel intensity values 
of 0 or 1. 

 
D. Feature Extraction (GLCM) 

In this study, GLCM was used for feature 
extraction, with three main features used: 
correlation, homogeneity, and contrast. This 
method was used to classify images, recognize 
textures, segment them, recognize objects, and 
analyse their colours. In the neighbourhood 
between pixels, GLCM had four angular 
directions: 0°, 45°, 90°, and 135°. When the angle 
was 0°, the pixel density was calculated by 
moving one distance to the right. Pixel adjacency 
was calculated using a 45° angle and 1 pixel 
distance to the top right. The angle is 90°, and the 
pixel density was calculated by a 1 pixel distance 
on top. A 135° angle was used, and neighbouring 
pixels were calculated by moving one pixel up 
[26]. The gray level of pixels was compared based 
on angle or neighbours at 0°, 45°, 90°, and 135° in 
this study. The feature extraction process was also 
compared the results of previously segmented 
images to those that have not been segmented. 

 

IV. FINDINGS 
 

A. Result of CNN Model 
The formation of network architecture in the 

CNN algorithm can affect the results of model 
accuracy. In order to produce an optimal model, 
network architecture was used during the training 
process. This study applied an input image with a 
resolution of 256x256x3, with the aim for 
reducing image size so that the classification 
process took as little time as possible. This study 
applied the second version of the ShuffleNet 
architecture, which included one convolutional 
layer (Conv5), three stages (consisting of 
convolutional and shuffle units), one pooling layer 
(using Maxpool), and fc. The input image in the 
shuffleNet v2 model was 256 x 256 in size. The 
convolution and maximum pooling layers were 
added to the model’s initial position to reduce the 

size of the feature graph. The convolution layer 
and pooling layer were replaced at the initial 
position by the convolutional layer (Conv1) with 
a 3 x 3 kernel, and the BN layer was added after 
Conv 1 and Conv 5. Figure 10 shows the flow of 
the proposed model. 
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Figure 10. Flow of Model Shuffle Net v2 Model 

 
The results of training and testing accuracy 

were obtained after going through several 
processes in the CNN algorithm. The value for 
training accuracy can be found in the "Accuracy" 
column, while the value for testing accuracy can 
be found in the "Validation Accuracy" column. 
Accuracy was the value calculated by calculating 
the accuracy of the training dataset and model 
predictions. Validation Accuracy is the value 
calculated by calculating the accuracy of the 
validation dataset and predictions from the model 
using validation dataset input data. This procedure 
used a total of 50 epochs. Previously, epoch 
comparisons were performed to determine the 
accuracy and validation results of each training 
with a different number of epochs. This epoch 
comparison was intended to find the best model. 
The number of epochs compared ranges between 
25 and 100 [27]. The use of epoch had a significant 
impact on the resulting accuracy. Because epoch 
can improve accuracy and the resulting accuracy 
was stable, it was critical to use the correct epoch 
in training data to achieve maximum accuracy. 
The table below compares training results based 
on the number of epochs. 

 
Table 2. 
Comparison of Epoch 

Epoc
h 

Accurac
y 

Loss 

Accurac
y 

Validatio
n 

Validatio
n Loss 

Tim
e 

25 97.46% 
0.068

6 
71% 1.9176 

20mi
nute  

50 98.75% 
0.035

8 
81.33% 1.2536 

56mi
nute 

75 99.08% 
0.027

9 
74% 2.4516 

1hou
r 

32m
inute 

100 99.29% 
0.021

8 
74.17% 1.1251 

2hou
r 

20m
inute 

 
The training model's accuracy with a total of 50 

epochs is 98.75% with a loss of 0.0218. The 
validation accuracy value for the 50 epochs is 
81.33%, which is higher than the other epochs. 
According to the table, the closer to the highest 
epoch, the higher the accuracy obtained from the 
testing results. However, if more than 100 epochs 
are added, the accuracy value decreases because 

too many epochs can also affect the large number 
of datasets. The testing procedure used training 
data consisting of 2400 image data and 600 image 

data for each class, as well as 200 image data for 
each class. Table 3 shows the results of the 
confusion matrix. 

 
 
 
 
 
 
 

Table 3. 
Confusion Matrix 

 
Based on the results of table 3, the model's 

predictions on the new data testing data show 
promising results. Although the prediction of the 
Bare class is correctly classified as the Bare class, 
up to four miss classifications from the Bare image 
data input are classified as the High class. While 
the Medium class prediction is correctly classified 
as the Medium class, as many as 9 miss 
classifications from the input image data are 
classified as the Bare class. In addition, up to 88 
misclassifications of input image data are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 8 
miss classifications from the High image data 
input are classified as the Bare class. As many as 
12 misclassifications of input image data were 
classified as Medium. The overall accuracy of the 
matrix and kappa accuracy are calculated as 
follows: 

 
Overall Accuracy = 469/600 = 80% 
Kappa = 70% 

 
So, the model's accuracy with a 256x256 input 

image and a total of 600 image data obtained an 
accuracy value of 80% and a kappa accuracy of 
70%. 

 
B. Result of CNN Model with GLCM 

The addition of three GLCM features, namely 
contrast, homogeneity, and correlation, is the 

Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 209 0 4 

Medium 9 92 88 

High 8 12 178 



 

result of the next training model. The procedure 
involved extracting 3,000 GLCM result image 
data and producing 9,000 image data that was 
processed by CNN. This study also compared the 
direction angles of 0°, 45°, 90°, and 135° to extract 
images per angle. The GLCM process used a total 
of 27,000 image data through the segmentation 
stage. This was done to determine how well each 
feature performed in the image classification 
process. 

For the GLCM process with CNN going 
through the segmentation stage, the results of data 
training with the CNN model and each GLCM 
feature by going through the segmentation stage 
with 9,000 data for each angle, can be seen at an 
angle of 135° getting the highest validation 
accuracy value from other angles, namely 60.11% 
with a value validation loss of 0.8460. For each 
feature, this training procedure applied a total of 
50 epochs. This training process took 
approximately 20-30 minutes per corner. Table 5 
shows the results of the GLCM training data per 
corner. 

 
Table 4. 
Comparison of Training Per Angle 

 

The training data is 9,000 images, and the test 
data is 1,800 images, with 3,000 images in each 
class. Table 5 shows the confusion matrix results 
for the CNN model process with GLCM that went 
through the segmentation stage. 

Table 5. 
Confusion Matrix 

 

According to the results in table 5, the model's 
prediction results on new data testing data are poor. 
Although the prediction of the Bare class is correct, 
as many as 92 miss classifications from the Bare 
image data input are classified as Medium. In 

addition, up to 83 miss classifications from the 
Bare image data input are classified as High. 
While the Medium class prediction was correctly 
classified as the Medium class, as many as 54 miss 
classifications from the input image data were 
classified as the Bare class. In addition, 137 
misclassifications of image data input Medium are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 83 
miss classifications from the High image data 
input are classified as the Bare class. In addition, 
218 miss classifications from the High image data 
input are classified as Medium. The overall 
accuracy of the matrix and kappa accuracy are 
calculated as follows:  

 

Overall Accuracy = 1133/1800x100% = 62,99% 

Kappa = 44,37%  

 

So, with an input image of 256x256 pixels and 
a total of 1800 image data, the model produced an 
accuracy value of 62.99% and a kappa accuracy of 
44.37%. 

V. DISCUSSION 
When the CNN model without the GLCM 

process was compared to the CNN model with the 
GLCM process, the comparison was quite far from 
the accuracy values obtained. The CNN model 
achieved an accuracy of 80%, while the CNN 
model with GLCM achieves 62.99% segmentation. 
This showed that the CNN model outperformed 
the GLCM process. According to the findings of 
the analysis, this occurred because the gray level 
in the image was leveled during the GLCM 
process, resulting in white and black colors in the 
image. The colours in the original image changed 
to white and black, resulting in a classification 
error. The GLCM process rendered the image 
colourless and rendered the entire image black.  

During the testing of new data, there was a 
misclassification caused by nearly identical 
vegetation types. The input data for the CNN 
model was original image data with different types 
of vegetation, but based on the researcher's 
analysis, even though the texture between medium 
and high vegetation was different, the CNN model 
still had difficulty distinguishing and recognizing 
medium and high classes if the data 
simultaneously has the characteristics of an image 
that was filled with vegetation even though the 
type and texture of the vegetation was different. 
The CNN model with the GLCM method had a lot 
of misclassifications. The first reason was that the 
original image's colour had changed, making it 

Angle 
Accu
racy 

Loss 

Valid
ation 
Accu
racy 

Valid
ation 
Loss 

Time 

0° 
95.24

% 
0.137

7 
50.28

% 
0.609

6 
 29 mnt 
6 scnd 

45° 
94.99

% 
0.134

6 
50.39

% 
0.552

6 
31 mnt 
20 scnd 

90° 
96.42

% 
0.105

5 
59.94

% 
0.761

6 
31 mnt 
12 scnd 

135° 
96.26

% 
0.117

6 
60.11

% 
0.846

0 
31 mnt 
11 scnd 

Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 407 92 83 

Medium 54 419 137 

High 83 218 307 



 

difficult for the model to distinguish between 
classes. The second issue was that the type and 
texture of the vegetation were not visible in the 
image, so when predicting with the CNN and 
GLCM models on prototypes, the bare class data 
was read as medium class. High class reads as 
medium class. This research is the only research 
to classified vegetation density in tropical peatland.  
 

VI. CONCLUSION 
The conclusion is that comparing the CNN 

model without the GLCM process to the CNN 
model with the GLCM process produces a 
comparison that is quite far from the accuracy 
value obtained. The CNN model achieves an 
accuracy of 80%, while the CNN model with 
GLCM achieves 62.99% segmentation. This 
demonstrates that the CNN model outperforms the 
GLCM process in land cover classification. This 
demonstrates that the image processing process 
has a significant impact on the classification and 
prediction stages in vegetation density in tropical 
peatland. 
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Abstract 
Land cover or vegetation density in tropical peatland is an important factor as hydrology respon in 
geographic analysis, ranging from physical geography studies, approaches to sustainable planning to 
environmental analysis. Vegetation analysis according to the Indonesian National Standard (SNI 
7645:2014) is classified based on density. The vegetation density index is divided into 4, namely non-
vegetation, bare, medium and high. In the technical aspect to obtain information related to 
vegetation, this can be done using remote sensing. Remote sensing uses two data to obtain 
information, namely satellite data and UAV data. This study used UAV data with shooting locations 
in the Liang Anggang Protection Forest in classifying land cover. The method used was 
Convolutional Neural Network with feature extraction used in this study was GLCM. This research 
used the ShuffleNet v2 architecture on the CNN method. The findings of this study used two models, 
namely the CNN model without the GLCM process and compared to the CNN model with the 
addition of the GLCM process, resulting in a comparison that was quite far from the accuracy value 
obtained. The CNN model obtained an accuracy value of 80%, while the CNN model with GLCM 
using segmentation was 49.9% and without segmentation was 44.53%. 
 

Keywords: Tropical Peatland, Vegetation Density, Classification; class; CNN; GLCM; accuracy. 
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I. INTRODUCTION 

Peatland management in Indonesia has many 
challenges, due to peatland disaster [1], as flood 
and wildfire. Wildfire caused by human action is 
the biggest one. Many wildfires in Indonesia as 
intentional fires as part of residential 
developments [2]. It is lead to change land cover 
as change from vegetation density in tropical 
peatland.  Land cover or vegetation density change 
as one of internal factor as hydrological respon. 
From physical geography studies to approaches to 
sustainable planning to environmental analysis, 
land cover is an important factor in geographic 
analysis, especially in disaster mitigation in 
tropical peatland. Environmental analysis needs 
surface vegetation-based land cover information 
[3]. The entire plant of an area that serves as a land 
cover is referred to as vegetation. Vegetation is the 
entire plant of an area that serves as a land cover. 
According to the Indonesian National Standard [4], 
vegetation analysis is classified based on density. 
Non-vegetation, bare, medium, and high 
vegetation density indexes are used [4]. In 
addition to determining the level of vegetation 
density, it is important to be able to distinguish 
vegetation density in the form of an image, which 
makes data processing easier. N.A. Harahap (year) 
conducted research which provides an image of 
the classification of vegetation density classes 
based on the images shown in Figure 1.1. 

 
 
 
 
 
 

 
Figure 1. (a) Non Vegetation, (b) Bare Vegetation, (c) 

Medium Vegetation, (d) High Vegetation 
 
Vegetation density analysis in tropical peatland 

is one method for studying the arrangement and 
composition of vegetation in terms of plant shape 
(structure). In terms of technology, remote sensing 
can be used to obtain information about vegetation. 
Remote sensing obtains information from two 
sources: satellite data and UAV data. Previous 
research that used remote sensing technology by 
utilizing satellite data resulted in data accuracy 
ranging from 63% - 85% using various methods 
[3], [5]. Because satellite data is a traditional 
format based on statistical reporting and sampling 

surveys, determining vegetation density is critical 
[5]. Remote sensing with satellite data has been 
widely used in the identification and classification 
of land cover patterns across a wide geographic 
coverage, but the use of satellite data, which has a 
high operating altitude and is easily influenced by 
weather, clouds, and other external factors, is 
being reconsidered. Remote sensing technology 
can quickly and precisely provide spatial 
information on the earth surface. The object being 
sensed, the sensor for recording the object, and the 
electronic waves emitted by the earth surface are 
the three main components of remote sensing.  

Remote sensing technology can quickly and 
precisely provide spatial information on the earth 
surface. The object being sensed, the sensor for 
recording the object, and the electronic waves 
emitted by the earth surface are the three main 
components of remote sensing. As technology 
advances, remote sensing facilities such as the 
Unmanned Aerial Vehicle (UAV) become more 
practical and easier to implement. The emergence 
of UAV raises significant potential as a tool for 
environmental and ecological analysis, such as 
monitoring agricultural land, forest fires, arctic 
lichen distribution, and mapping of mangrove 
forests. The generation of spatial information 
based on aerial image data using drones has 
enormous potential for the advancement of remote 
sensing technology, such as area classification. 
The benefits of using a UAV include faster and 
more flexible data acquisition, results that are 
more real-time, and low and light operating and 
maintenance costs. Apart from the ability to fly 
through clouds and produce cloud-free images, it 
differs from satellite imagery, which is heavily 
influenced by atmospheric conditions. UAV 
imagery has a high resolution when compared to 
satellite imagery, reaching a spatial resolution of 
less than 1 cm, which is much more detailed than 
satellite (30cm) and aircraft (10cm) imagery [3]. 
Optimal results that can be obtained from the use 
of UAV in object classification and the 
appropriate method for processing data with UAV 
imagery.  

Before being processed in a classification 
model, image data requires feature extraction 
techniques to determine certain characteristics 
possessed by images to aid in object identification 
(image analysis) [3], [6], [7]. The resulting 
features will be selected first in the feature 
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extraction process to obtain features with a high 
influence as a reference for the classification 
process. The function of feature extraction is to 
extract the necessary information from an image. 
Shape, colour, and texture extraction are the three 
types of feature extraction. Images with a slight 
colour can benefit from feature extraction using 
the Gray Level Co-occurrence Matrix (GLCM) 
method, which is a second level statistical method 
that computes the frequency of pairs of pixels in 
an image that have the same gray level and applies 
the additional knowledge obtained through pixel 
spatial relationships [8]. Using edge information, 
the co-occurrence matrix embeds the distribution 
of grayscale transitions. The majority of the 
information required to calculate the threshold 
value in the GLCM technique is straightforward 
but efficient [9]. S. Karthikeyan and N. 
Rengarajan use the GLCM algorithm with up to 
95% accuracy. Previous research has compared 
GLCM feature extraction to LBP, MI, CLBP, 
LBGLCM, and GLRLM, with the accuracy results 
proving that using feature extraction in 
classification using GLCM produces better results 
than using other methods. GLCM accuracy results 
range from 70% to 93% [9]–[11].   

Visual interpretation methods, pixel-based 
digital classification methods, and object-based 
classification methods are used in land cover 
mapping based on remote sensing imagery. Land 
cover analysis researchers are interested in the use 
of data mining methods. Land classification, 
Machine Learning, and Deep Learning have all 
made extensive use of classification methods. 
Deep learning, which is included in the supervised 
classification, is developed and produced by the 
machine learning method. Deep learning methods 
are widely used in satellite image analysis because 
they are powerful and intelligent in image 
processing. Deep learning methods are still 
evolving, with the Convolutional Neural Network 
(CNN) deep learning method producing the most 
significant results in image recognition to date. 
Deep Learning has demonstrated that this 
architecture, particularly CNN, can learn human-
level solutions to specific visual tasks. This 
method has been used extensively in remote 
sensing image analysis tasks such as object 
detection in images, image recording, scene 
classification, segmentation, object-based image 
analysis, and land use and land cover classification 
[12]. CNN is one of the most recent Deep 
Learning methods to emerge. This method has 
been shown to be useful for pattern recognition 
and object classification [3]. Previous research 
using the CNN method to classify land cover 

yielded satisfactory accuracy results ranging from 
73% to 98% [3], [12], [13]  

CNN has a variety of popular architectures, 
including LeNet5 (1998), AlexNet (2012), ZFNet 
(2013), GoogleNet (2014), ResNet (2015), 
FractalNet (2016), ShuffleNet (2018), and others. 
Previous research has compared the use of 
architecture on CNN in the field of classification. 
The compared architectures demonstrate the 
advantage and disadvantage of each, for 
architectures that are widely used in the field of 
image classification and are relatively new, and 
have been compared with several other 
architectures, ShuffleNet. ShuffleNet is a very 
efficient CNN architecture with fast accuracy. 
Research that has used the ShuffleNet architecture 
and has made comparisons with other 
architectures such as GoogleNet, DenseNet, 
MobileNet, Xception, IGCV2, EffNet V1, EffNet 
V2, IoTNet-3-5 and ResNet50 in the classification 
process states that the ShuffleNet architecture 
increases the accuracy of 82% - 98% with less 
memory usage and faster processing time [14]–
[18]. 

The CNN method is widely used in the field of 
deep learning to conduct land cover classification. 
GLCM was used to extract features in this study. 
The ShuffleNet architecture on the CNN method 
will be used in this study. This research was 
carried out for a month in the Liang Anggang 
Protected Forest area, Banjarbaru block 1 area, 
with targeted data collection. The location for this 
study was chosen based on observations made 
during the observation and survey of the block 1 
area, where, according to the 2017 Provincial 
Forestry Office, an area of 479 hectares of block 1 
area is filled with land such as agriculture, 
plantations, roads and settlements, as well as 494 
hectares of forest. In addition to being a peatland, 
the research site, particularly in block 1, meets the 
characteristics and suitability of the needs in 
collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 
and high) that can be seen with the naked eye 
during observations and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. The 
objective of this study was to determine the results 
of the best deep learning methods in land cover 
classification based on vegetation density. This 
study created research updates by combining 
UAV data with shooting locations in the Liang 
Anggang Protected Forest. 
 

II. RESEARCH METHODOLOGY 
 



 

A. Research Site 
This study was being conducted in the Liang 

Anggang Protected Forest in Banjarbaru City as 
the biggest wildfire in tropical peatland in South 
Kalimantan. This is the Tangi Timber KPHP's 
management area. The protected forest 
designation is based on Minister of Forestry 
Decree No. 672/Kpts-II/1991 and Kep Menhut No. 
434/Kpts-II/1996 with a total area of 2,250 
hectares divided into two protected forest blocks, 
namely block 1 covering an area of 960 hectares 
including Liang Anggang sub-district, Banjarbaru 
and block 2 covering an area of 1290 hectares 
including the Gambut District, Banjar Regency. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Map of the Liang Anggang Protected Forest Area 

 
The study lasted one month, from November to 

December 2021, and focused on the Warning Area 
(lock signal area from the airport) that caused the 
drone to be unable to operate. 

 
B. Research Procedure 

This research was conducted in the Liang 
Anggang Protected Forest area by conducting a 
field survey to assess the state of the vegetation or 
areas within the Protected Forest area. This study 
collected image data using drones to capture 
images from a height of 20 meters over a one-
month period. Land was assigned coordinates 
based on the goal of image data collection using 
Google Earth Pro tools. Land with coordinates 
was exported in .KML format and later imported 
into DroneDeploy (website) to make directing 
drone flights on land easier. Then, the imported 
KML file was configured for flight altitude and 2D 
or 3D image capture. An illustration of image 
capture is shown in Figure 3. 

 
 
 
 
 
 
 

 
 

Figure 3. Illustration of Image Data Retrieval 
 
Before proceeding to the next stage, image data 

that has been recorded and stored according to 
predetermined coordinate points was processed. 
To facilitate operation with the method that was 
used later, image data was labelled. The CNN 
method was used in this study. Image data that has 
already been processed was then fed into the 
classification process using the method used in 
this study. Image data was classified using each 
method, and the accuracy value was calculated 
using tools. The obtained accuracy value was then 
analysed and compared to draw conclusions. The 
flow of this research is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Diagram of Research Procedure 
 

C. Feature Extraction 
The purposes of feature extraction is to obtain 

the feature value of an object based on an image 
pixel intensity value relationship. The feature 
extraction process goal is to extract a special 
(unique) value from each image [19], [20]. This 
study used GLCM feature extraction with three 
primary features: correlation, homogeneity, and 
contrast. The feature extraction results created a 
GLCM version of the image using these three 
features. Figure 5 shows an illustration or 
description of the texture extraction results 
obtained with the GLCM feature. 

 
 
 
 
 



 

 
 
 

 
Figure 5. Result of Feature Extraction 

 
The texture of an image was sought after by 

feature extracted images. The training data set 
consisted of 2400 images divided into three 
classes. This study applied 5 GLCM features to 
convert an input 2D image/image to an output 2D 
image/image to a gray level with a gray range of 0 
to 1. The purpose of this step was to use gray level 
scaling to reduce the image volume to a more 
manageable size. Scaling to a grayscale level acted 
as a filter, removing some of the noise (de Mello, 
2013). Figure 6 shows the scenario of the feature 
extraction test results with GLCM. 

 
 
 
 
 
 

 
Figure 6. Ilustration of GLCM-CNN Feature Extraction 
 

D. Classification of Convolutional Neural 
Networks 
Only CNN neural networks can process grid 

structure data, such as two-dimensional images. 
The convolution layer is a linear algebra operation 
that generates a matrix of filters in the image to be 
processed. A convolution layer process is one of 
the many types of layers that can exist in a network. 
The image entered into the CNN classification 
model created during the fit model stage yielded 
an output calculated using the optimized weight. 
As a result, the classification model created should 
be able to classify the testing data into the correct 
class. This test was performed to calculate the 
accuracy value in the classification model that has 
been created. Figure 7 shows an illustration of the 
CNN classification process. 

 
 
 
 
 
 

 
Figure 7. Illustration of CNN Classification Process 
 
Figure 8 shows the classification flow using the 

CNN method 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Stage of CNN Classification 
 

E. Classification Analysis 
The results of the UAV image classification 

using two methods were analysed and the level of 
accuracy was determined. This study applied 
accuracy testing with a confusion matrix in the 
form of overall accuracy (OA) and Kappa 
coefficient accuracy. Proceed with the analysis of 
the CNN method classification results to obtain 
accurate results from the use of the CNN method 
in land cover classification. 

 

III. TESTING 
 

A. Image Dataset 
The dataset used in this study was divided into 

three categories: bare, medium, and high. The total 
number of images collected was 3000, with 1000 
for each class type category. The classification of 
these three classes was based on the condition of 
the Liang Anggang Protected Forest where the 
research location, particularly block 1, meets the 
characteristics and suitability of the needs in 



 

collecting data for land cover classification in 
terms of vegetation density types (bare, medium, 
and high) that can be seen with the naked eye 
during observation and surveys. This study 
classified land cover, with a focus on vegetation 
density, and the research location was chosen in 
accordance with the data requirements. Table 1 
shows the results of categorizing three classes of 
vegetation density in terms of images based on the 
division of the available dataset [21]. 

 
 

Table 1. 
Image of Vegetation Density 

Source:  
 
B. Image Cropping  

Because the image data obtained with the 
drone was too large, the data was resized by 
cutting the image and selecting specific areas to be 
used as training data. Cropped image data aimed 
to facilitate the classification process, did not take 
up much space or memory, and the classification 
process was light, so it did not require a long time 
in the classification process later. The image data 
was cropped to 256 x 256 pixels, reducing the 
image size to 159 KB. The cropped image data 
was classified into three types: bare, medium, and 
dense/high [22], [23]. Figure 9 shows the cropping 
results of image data. 

 
 

 
 
 

 
Figure 9. Image Data Cropping 

 
C. Segmentation 

Image segmentation was used to distinguish 
between objects and backgrounds [24], [25]. The 
separation process was designed to make 
classification and calculations easier. The image 
segmentation process was based on the difference 
in the image grayscale. To convert a colour image 
with r, g, and b matrix values into a grayscale 
image. The segmentation method, namely 
thresholding, can be used to change the colour 

image. The most basic method for segmenting was 
image development or image thresholding (de 
Mello, 2013). Thresholding was used to change 
the number of gray degrees in an image in order to 
create a binary image with pixel intensity values 
of 0 or 1. 

 
D. Feature Extraction (GLCM) 

In this study, GLCM was used for feature 
extraction, with three main features used: 
correlation, homogeneity, and contrast. This 
method was used to classify images, recognize 
textures, segment them, recognize objects, and 
analyse their colours. In the neighbourhood 
between pixels, GLCM had four angular 
directions: 0°, 45°, 90°, and 135°. When the angle 
was 0°, the pixel density was calculated by 
moving one distance to the right. Pixel adjacency 
was calculated using a 45° angle and 1 pixel 
distance to the top right. The angle is 90°, and the 
pixel density was calculated by a 1 pixel distance 
on top. A 135° angle was used, and neighbouring 
pixels were calculated by moving one pixel up 
[26]. The gray level of pixels was compared based 
on angle or neighbours at 0°, 45°, 90°, and 135° in 
this study. The feature extraction process was also 
compared the results of previously segmented 
images to those that have not been segmented. 

 

IV. FINDINGS 
 

A. Result of CNN Model 
The formation of network architecture in the 

CNN algorithm can affect the results of model 
accuracy. In order to produce an optimal model, 
network architecture was used during the training 
process. This study applied an input image with a 
resolution of 256x256x3, with the aim for 
reducing image size so that the classification 
process took as little time as possible. This study 
applied the second version of the ShuffleNet 
architecture, which included one convolutional 
layer (Conv5), three stages (consisting of 
convolutional and shuffle units), one pooling layer 
(using Maxpool), and fc. The input image in the 
shuffleNet v2 model was 256 x 256 in size. The 
convolution and maximum pooling layers were 
added to the model’s initial position to reduce the 

size of the feature graph. The convolution layer 
and pooling layer were replaced at the initial 
position by the convolutional layer (Conv1) with 
a 3 x 3 kernel, and the BN layer was added after 
Conv 1 and Conv 5. Figure 10 shows the flow of 
the proposed model. 
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Figure 10. Flow of Model Shuffle Net v2 Model 

 
The results of training and testing accuracy 

were obtained after going through several 
processes in the CNN algorithm. The value for 
training accuracy can be found in the "Accuracy" 
column, while the value for testing accuracy can 
be found in the "Validation Accuracy" column. 
Accuracy was the value calculated by calculating 
the accuracy of the training dataset and model 
predictions. Validation Accuracy is the value 
calculated by calculating the accuracy of the 
validation dataset and predictions from the model 
using validation dataset input data. This procedure 
used a total of 50 epochs. Previously, epoch 
comparisons were performed to determine the 
accuracy and validation results of each training 
with a different number of epochs. This epoch 
comparison was intended to find the best model. 
The number of epochs compared ranges between 
25 and 100 [27]. The use of epoch had a significant 
impact on the resulting accuracy. Because epoch 
can improve accuracy and the resulting accuracy 
was stable, it was critical to use the correct epoch 
in training data to achieve maximum accuracy. 
The table below compares training results based 
on the number of epochs. 

 
Table 2. 
Comparison of Epoch 

Epoc
h 

Accurac
y 

Loss 

Accurac
y 

Validatio
n 

Validatio
n Loss 

Tim
e 

25 97.46% 
0.068

6 
71% 1.9176 

20mi
nute  

50 98.75% 
0.035

8 
81.33% 1.2536 

56mi
nute 

75 99.08% 
0.027

9 
74% 2.4516 

1hou
r 

32m
inute 

100 99.29% 
0.021

8 
74.17% 1.1251 

2hou
r 

20m
inute 

 
The training model's accuracy with a total of 50 

epochs is 98.75% with a loss of 0.0218. The 
validation accuracy value for the 50 epochs is 
81.33%, which is higher than the other epochs. 
According to the table, the closer to the highest 
epoch, the higher the accuracy obtained from the 
testing results. However, if more than 100 epochs 
are added, the accuracy value decreases because 

too many epochs can also affect the large number 
of datasets. The testing procedure used training 
data consisting of 2400 image data and 600 image 

data for each class, as well as 200 image data for 
each class. Table 3 shows the results of the 
confusion matrix. 

 
 
 
 
 
 
 

Table 3. 
Confusion Matrix 

 
Based on the results of table 3, the model's 

predictions on the new data testing data show 
promising results. Although the prediction of the 
Bare class is correctly classified as the Bare class, 
up to four miss classifications from the Bare image 
data input are classified as the High class. While 
the Medium class prediction is correctly classified 
as the Medium class, as many as 9 miss 
classifications from the input image data are 
classified as the Bare class. In addition, up to 88 
misclassifications of input image data are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 8 
miss classifications from the High image data 
input are classified as the Bare class. As many as 
12 misclassifications of input image data were 
classified as Medium. The overall accuracy of the 
matrix and kappa accuracy are calculated as 
follows: 

 
Overall Accuracy = 469/600 = 80% 
Kappa = 70% 

 
So, the model's accuracy with a 256x256 input 

image and a total of 600 image data obtained an 
accuracy value of 80% and a kappa accuracy of 
70%. 

 
B. Result of CNN Model with GLCM 

The addition of three GLCM features, namely 
contrast, homogeneity, and correlation, is the 

Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 209 0 4 

Medium 9 92 88 

High 8 12 178 



 

result of the next training model. The procedure 
involved extracting 3,000 GLCM result image 
data and producing 9,000 image data that was 
processed by CNN. This study also compared the 
direction angles of 0°, 45°, 90°, and 135° to extract 
images per angle. The GLCM process used a total 
of 27,000 image data through the segmentation 
stage. This was done to determine how well each 
feature performed in the image classification 
process. 

For the GLCM process with CNN going 
through the segmentation stage, the results of data 
training with the CNN model and each GLCM 
feature by going through the segmentation stage 
with 9,000 data for each angle, can be seen at an 
angle of 135° getting the highest validation 
accuracy value from other angles, namely 60.11% 
with a value validation loss of 0.8460. For each 
feature, this training procedure applied a total of 
50 epochs. This training process took 
approximately 20-30 minutes per corner. Table 5 
shows the results of the GLCM training data per 
corner. 

 
Table 4. 
Comparison of Training Per Angle 

 

The training data is 9,000 images, and the test 
data is 1,800 images, with 3,000 images in each 
class. Table 5 shows the confusion matrix results 
for the CNN model process with GLCM that went 
through the segmentation stage. 

Table 5. 
Confusion Matrix 

 

According to the results in table 5, the model's 
prediction results on new data testing data are poor. 
Although the prediction of the Bare class is correct, 
as many as 92 miss classifications from the Bare 
image data input are classified as Medium. In 

addition, up to 83 miss classifications from the 
Bare image data input are classified as High. 
While the Medium class prediction was correctly 
classified as the Medium class, as many as 54 miss 
classifications from the input image data were 
classified as the Bare class. In addition, 137 
misclassifications of image data input Medium are 
classified as High. The High class prediction is 
correctly classified as the High class, but up to 83 
miss classifications from the High image data 
input are classified as the Bare class. In addition, 
218 miss classifications from the High image data 
input are classified as Medium. The overall 
accuracy of the matrix and kappa accuracy are 
calculated as follows:  

 

Overall Accuracy = 1133/1800x100% = 62,99% 

Kappa = 44,37%  

 

So, with an input image of 256x256 pixels and 
a total of 1800 image data, the model produced an 
accuracy value of 62.99% and a kappa accuracy of 
44.37%. 

V. DISCUSSION 
When the CNN model without the GLCM 

process was compared to the CNN model with the 
GLCM process, the comparison was quite far from 
the accuracy values obtained. The CNN model 
achieved an accuracy of 80%, while the CNN 
model with GLCM achieves 62.99% segmentation. 
This showed that the CNN model outperformed 
the GLCM process. According to the findings of 
the analysis, this occurred because the gray level 
in the image was leveled during the GLCM 
process, resulting in white and black colors in the 
image. The colours in the original image changed 
to white and black, resulting in a classification 
error. The GLCM process rendered the image 
colourless and rendered the entire image black.  

During the testing of new data, there was a 
misclassification caused by nearly identical 
vegetation types. The input data for the CNN 
model was original image data with different types 
of vegetation, but based on the researcher's 
analysis, even though the texture between medium 
and high vegetation was different, the CNN model 
still had difficulty distinguishing and recognizing 
medium and high classes if the data 
simultaneously has the characteristics of an image 
that was filled with vegetation even though the 
type and texture of the vegetation was different. 
The CNN model with the GLCM method had a lot 
of misclassifications. The first reason was that the 
original image's colour had changed, making it 

Angle 
Accu
racy 

Loss 

Valid
ation 
Accu
racy 

Valid
ation 
Loss 

Time 

0° 
95.24

% 
0.137

7 
50.28

% 
0.609

6 
 29 mnt 
6 scnd 

45° 
94.99

% 
0.134

6 
50.39

% 
0.552

6 
31 mnt 
20 scnd 

90° 
96.42

% 
0.105

5 
59.94

% 
0.761

6 
31 mnt 
12 scnd 

135° 
96.26

% 
0.117

6 
60.11

% 
0.846

0 
31 mnt 
11 scnd 

Matrix Predict Class 

Actual 

Class 

 
Bare Medium High 

Bare 407 92 83 

Medium 54 419 137 

High 83 218 307 



 

difficult for the model to distinguish between 
classes. The second issue was that the type and 
texture of the vegetation were not visible in the 
image, so when predicting with the CNN and 
GLCM models on prototypes, the bare class data 
was read as medium class. High class reads as 
medium class. This research is the only research 
to classified vegetation density in tropical peatland.  
 

VI. CONCLUSION 
The conclusion is that comparing the CNN 

model without the GLCM process to the CNN 
model with the GLCM process produces a 
comparison that is quite far from the accuracy 
value obtained. The CNN model achieves an 
accuracy of 80%, while the CNN model with 
GLCM achieves 62.99% segmentation. This 
demonstrates that the CNN model outperforms the 
GLCM process in land cover classification. This 
demonstrates that the image processing process 
has a significant impact on the classification and 
prediction stages in vegetation density in tropical 
peatland. 
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Abstract 
Land cover or vegetation density in tropical peatland is an essential factor in hydrology response in 

geographic analysis, ranging from physical geography studies and approaches to sustainable planning to 
environmental research. Vegetation analysis according to the Indonesian National Standard (SNI 
7645:2014) is classified on the basis of density. The vegetation density index is divided into four 
categories: non-vegetation, bare, medium, and high. In the technical aspect, to obtain information related 
to vegetation, this can be done using remote sensing. Remote sensing uses two types of data to obtain 
information: satellite data and UAV data. This study used UAV data with shooting locations in the Liang 
Anggang Protection Forest for classifying land cover. The method used was convolutional neural network 
with feature extraction used in this study was GLCM. This research used the ShuffleNet v2 architecture 
for the CNN method. The findings of this study used two models: the CNN model without GLCM 
process and compared to the CNN model with the addition of GLCM process, resulting in a comparison 
that was quite far from the accuracy value obtained. The CNN model obtained an accuracy value of 80%, 
while the CNN model with GLCM using segmentation gained 49.9% and without segmentation - 44.53%. 

Keywords: Tropical Peatland, Vegetation Density, Classification, Class, Convolutional Neural Network, Gray 
Level Co-Occurrence Matrix, Accuracy 

摘要 热带泥炭地的土地覆盖或植被密度是地理分析中水文响应的一个重要因素，范围从自然地理
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研究和可持续规划方法到环境研究。根据印度尼西亚国家标准(SNI 7645:2014)的植被分析是根据

密度进行分类的。植被密度指数分为无植被、裸露、中、高四类。在技术方面，要获得与植被有

关的信息，可以使用遥感来完成。遥感使用两种类型的数据来获取信息：卫星数据和无人机数据

。本研究使用带有梁安岗防护林拍摄地点的无人机数据对土地覆盖进行分类。使用的方法是卷积

神经网络，本研究中使用的特征提取是 GLCM。本研究将洗牌网络 v2架构用于美国有线电视新闻

网方法。这项研究的结果使用了两个模型：没有 GLCM过程的美国有线电视新闻网模型和添加了

GLCM过程的美国有线电视新闻网模型进行比较，导致比较结果与获得的精度值相去甚远。美国有

线电视新闻网模型获得了 80%的准确度值，而使用 GLCM使用分割的美国有线电视新闻网模型获得

了 49.9%，没有分割- 44.53%。 

关键词: 热带泥炭地，植被密度，分类，类，卷积神经网络，灰度共生矩阵，精度 

 
I. INTRODUCTION 

Peatland management in Indonesia has many 
challenges due to peatland disasters [1], such as 
floods and wildfires. Wildfire caused by human 
action is the biggest. Many wildfires in Indonesia 
are intentional fires as part of residential 
developments [2]. They lead to change in land 
cover as changes in vegetation density in tropical 
peatland. Land cover or vegetation density 
change is one of the internal factors of 
hydrological response. From physical geography 
studies to approaches to sustainable planning to 
environmental analysis, land cover is an essential 
factor in geographic analysis, especially in 
disaster mitigation in tropical peatlands. 
Environmental analysis needs surface vegetation-
based land cover information [3]. The entire plant 
of an area that serves as a land cover is referred 
to as vegetation. Vegetation is the entire plant of 
an area that serves as a land cover. According to 
the Indonesian National Standard [4], vegetation 
analysis is classified based on density. Non-
vegetation, bare, medium, and high vegetation 
density indexes are used [4]. In addition to 
determining the level of vegetation density, it is 
important to be able to distinguish vegetation 
density in the form of an image, which makes 
data processing easier. Vegetation density in 
tropical peatland is classified [5]–[8] is based on 
Figure 1. 

(a) (b) (c) 
Figure 1. (a) Bare vegetation, (b) medium vegetation, (c) 

high vegetation 
 
Vegetation density analysis in tropical 

peatland is one method for studying the 
arrangement and composition of vegetation in 
terms of plant shape (structure). In terms of 

technology, remote sensing can be used to obtain 
information about vegetation. Remote sensing 
obtains information from two sources: satellite 
data and UAV data. Previous research that used 
remote sensing technology by using satellite data 
resulted in data accuracy ranging from 63-85% 
using various methods [3], [9]. Because satellite 
data is a traditional format based on statistical 
reporting and sampling surveys, determining 
vegetation density is critical [9]. Remote sensing 
with satellite data has been widely used in the 
identification and classification of land cover 
patterns across a wide geographic coverage, but 
the use of satellite data, which has a high 
operating altitude and is easily influenced by 
weather, clouds, and other external factors, is 
being reconsidered. Remote sensing technology 
can quickly and precisely provide spatial 
information on the earth surface. The object 
being sensed, the sensor for recording the object, 
and the electronic waves emitted by the earth 
surface are the three main components of remote 
sensing.  

Remote sensing technology can quickly and 
precisely provide spatial information on the earth 
surface. The object being sensed, the sensor for 
recording the object, and the electronic waves 
emitted by the earth surface are the three main 
components of remote sensing. As technology 
advances, remote sensing facilities such as the 
unmanned aerial vehicle (UAV) become more 
practical and easier to implement. The emergence 
of UAVs raises significant potential as a tool for 
environmental and ecological analysis, such as 
monitoring agricultural land, forest fires, Arctic 
lichen distribution, and mapping mangrove 
forests. The generation of spatial information 
based on aerial image data using drones has 
enormous potential for the advancement of 
remote sensing technology, such as area 
classification. The benefits of using a UAV 
include faster and more flexible data acquisition, 
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more real-time results, and low and light 
operating and maintenance costs. Apart from the 
ability to fly through clouds and produce cloud-
free images, it differs from satellite imagery, 
which is heavily influenced by atmospheric 
conditions. UAV imagery has a high resolution 
when compared to satellite imagery, reaching a 
spatial resolution of less than 1 cm, which is 
much more detailed than satellite (30 cm) and 
aircraft (10 cm) imagery [3]. Optimal results can 
be obtained from the use of UAV in object 
classification and the appropriate method for 
processing data with UAV imagery.  

Before being processed in a classification 
model, image data requires feature extraction 
techniques to determine certain characteristics 
possessed by images to aid in object 
identification (image analysis) [3], [10], [11]. The 
resulting features will be selected first in the 
feature extraction process to obtain features with 
a high influence as a reference for the 
classification process. The function of feature 
extraction is to extract the necessary information 
from an image. Shape, colour, and texture 
extraction are the three types of feature extraction. 
Images with a slight colour can benefit from 
feature extraction using the gray level co-
occurrence matrix (GLCM) method, which is a 
second-level statistical method that computes the 
frequency of pairs of pixels in an image that have 
the same gray level and applies the additional 
knowledge obtained through pixel spatial 
relationships [12]. Using edge information, the 
co-occurrence matrix embeds the distribution of 
grayscale transitions. Most of the information 
required to calculate the threshold value in the 
GLCM technique is straightforward but efficient 
[13]. S. Karthikeyan and N. Rengarajan used the 
GLCM algorithm with up to 95% accuracy. 
Previous research has compared GLCM feature 
extraction to LBP, MI, CLBP, LBGLCM, and 
GLRLM, with the accuracy results proving that 
using feature extraction in classification using 
GLCM produces better results than using other 
methods. GLCM accuracy results range from 
70% to 93% [13]–[15].   

Visual interpretation methods, pixel-based 
digital classification methods, and object-based 
classification methods are used in land cover 
mapping based on remote sensing imagery. Land 
cover analysis researchers are interested in the 
use of data mining methods. Land classification, 
machine learning, and deep learning have all 
made extensive use of classification methods. 
Deep learning, which is included in supervised 
classification, is developed and produced using 
the machine learning method. Deep learning 

methods are widely used in satellite image 
analysis because they are powerful and intelligent 
in image processing. Deep learning methods are 
still evolving, with the convolutional neural 
network (CNN) deep learning method producing 
the most significant results in image recognition 
to date. Deep Learning has demonstrated that this 
architecture, particularly CNN, can learn human-
level solutions to specific visual tasks. This 
method has been used extensively in remote 
sensing image analysis tasks such as object 
detection in images, image recording, scene 
classification, segmentation, object-based image 
analysis, and land use and land cover 
classification [16]. CNN is one of the most recent 
deep learning methods to emerge. This method is 
useful for pattern recognition and object 
classification [3]. Previous research using the 
CNN method to classify land cover yielded 
satisfactory accuracy results ranging from 73% to 
98% [3], [16], [17]. 

CNN has a variety of popular architectures, 
including LeNet5 (1998), AlexNet (2012), ZFNet 
(2013), GoogleNet (2014), ResNet (2015), 
FractalNet (2016), and ShuffleNet (2018). 
Previous research has compared the use of 
architecture on CNN in the field of classification. 
The compared architectures demonstrate their 
advantages and disadvantages, architectures that 
are widely used in the field of image 
classification and are relatively new, and have 
been compared with several other architectures. 
ShuffleNet is a very efficient CNN architecture 
with fast accuracy. Research that has used the 
ShuffleNet architecture and has made 
comparisons with other architectures such as 
GoogleNet, DenseNet, MobileNet, Xception, 
IGCV2, EffNet V1, EffNet V2, IoTNet-3-5 and 
ResNet50 in the classification process states that 
the ShuffleNet architecture increases the 
accuracy of 82%-98% with less memory usage 
and faster processing time [18]–[22]. 

The CNN method is widely used in the field 
of deep learning to conduct land cover 
classification. GLCM was used to extract features 
in this study. The ShuffleNet architecture on the 
CNN method will be used in this study. CNN is 
improved by using GLCM feature extraction to 
address the limitations of CNN. The high 
complexity is a limitation of CNN in feature 
extraction. This research was carried out for a 
month in the Liang Anggang Protected Forest, 
Banjarbaru Block 1, with the targeted data 
collection. The location for this study was chosen 
based on observations made during the 
observation and survey of the block 1 area, where, 
according to the 2017 Provincial Forestry Office, 
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an area of 479 hectares of block 1 area is filled 
with land such as agriculture, plantations, roads 
and settlements, as well as 494 hectares of forest. 
In addition to being a peatland, the research site, 
particularly in Block 1, meets the characteristics 
and suitability of the needs in collecting data for 
land cover classification in terms of vegetation 
density types (bare, medium, and high) that can 
be seen with the naked eye during observations 
and surveys. This study classified land cover with 
a focus on vegetation density, and the research 
location was chosen in accordance with the data 
requirements. The objective of this study was to 
determine the results of the best deep learning 
methods in land cover classification based on 
vegetation density. This study created research 
updates by combining UAV data with shooting 
locations in the Liang Anggang Protected Forest. 
 

II. RESEARCH METHODOLOGY 
 

A. Research Site 
This study was conducted in the Liang 

Anggang Protected Forest in Banjarbaru as the 
biggest wildfire in tropical peatland in South 
Kalimantan. This is Kayu Tangi KPHP 
management area. The protected forest 
designation is based on Minister of Forestry 
Decree No. 672/Kpts-II/1991 and Kep Menhut 
No. 434/Kpts-II/1996 with a total area of 2,250 
hectares divided into two protected forest blocks, 
namely block 1 covering an area of 960 hectares 
including Liang Anggang sub-district, Banjarbaru 
and block 2 covering an area of 1290 hectares 
including Gambut District, Banjar Regency. 

 
Figure 2. Map of the Liang Anggang Protected Forest 
 
The study lasted for one month, from 

November to December 2021, and focused on the 
warning area (lock signal area from the airport) 
that caused the drone to be unable to operate. 

 
B. Research Procedure 

This research was conducted in the Liang 
Anggang Protected Forest area by conducting a 
field survey to assess the state of vegetation or 

areas within the protected forest area. This study 
collected image data using drones to capture 
images from a height of 20 m over a one-month 
period. Land was assigned coordinates based on 
the goal of image data collection using Google 
Earth Pro tools. Land with coordinates was 
exported in .KML format and later imported into 
DroneDeploy (website) to make directing drone 
flights on land easier. Then, the imported KML 
file was configured for flight altitude and 2D or 
3D image capture. An illustration of image 
capture is shown in Figure 3. 

 
Figure 3. Illustration of the image data retrieval 

 
Before proceeding to the next stage, image 

data that had been recorded and stored according 
to predetermined coordinate points were 
processed. To facilitate the operation with the 
method that was used later, the image data were 
labeled. The CNN method was used in this study. 
Image data that had already been processed were 
then fed into the classification process using the 
method used in this study. The image data were 
classified using each method, and the accuracy 
value was calculated using the tools. The 
obtained accuracy value was then analyzed and 
compared to draw conclusions. The flow of this 
research is shown in Figure 4. 

 
Figure 4. Diagram of the research procedure 

 



753 
 

C. Feature Extraction 
The purpose of feature extraction is to obtain 

the feature value of an object based on an image 
pixel intensity value relationship. The goal of the 
feature extraction process is to extract a special 
(unique) value from each image [23], [24]. This 
study used GLCM feature extraction with three 
primary features: correlation, homogeneity, and 
contrast. The feature extraction results created a 
GLCM version of the image using these three 
features. Figure 5 shows an illustration or 
description of the texture extraction results 
obtained using the GLCM feature. 

 
Figure 5. Results of the feature extraction 

 
The texture of an image was sought after by 

feature-extracted images. The training data set 
consisted of 2400 images divided into three 
classes. This study applied 5 GLCM features to 
convert an input 2D image/image to an output 2D 
image/image to a gray level with a gray range of 
0 to 1. The purpose of this step was to use gray-
level scaling to reduce the image volume to a 
more manageable size. Scaling to a grayscale 
level acted as a filter, removing some of the noise 
[28]. Figure 6 shows the scenario of the feature 
extraction test results with GLCM. 

 
Figure 6. Illustration of GLCM-CNN feature extraction 
 

D. Classification of Convolutional Neural 
Networks 
Only CNN neural networks can process grid 

structure data, such as two-dimensional images. 
The convolution layer is a linear algebra 
operation that generates a matrix of filters in the 
image to be processed. A convolution layer 
process is one of the many types of layers that 
can exist in a network. The image entered into 
the CNN classification model created during the 
fit model stage yielded an output calculated using 
the optimized weight. As a result, the 
classification model created should be able to 
classify the testing data into the correct class. 
This test was performed to calculate the accuracy 
value in the classification model created. Figure 7 
illustrates the CNN classification process. 

 
Figure 7. Illustration of CNN classification process 

 
Figure 8 shows the classification flow using 

the CNN method. 

 
Figure 8. CNN classification stage  

 
E. Classification Analysis 

The results of UAV image classification using 
two methods were analyzed, and the level of 
accuracy was determined. This study applied 
accuracy testing with a confusion matrix in the 
form of overall accuracy (OA) and Kappa 
coefficient accuracy. Proceed with the analysis of 
the CNN method classification results to obtain 
accurate results from the use of the CNN method 
in the land cover classification. 
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III. TESTING 
 

A. Image Dataset 
The dataset used in this study was divided into 

three categories: bare, medium, and high. The 
total number of images collected was 3000, with 
1000 for each class type category. The 
classification of these three classes was based on 
the condition of the Liang Anggang Protected 
Forest where the research location, particularly 
block 1, meets the characteristics and suitability 
of the needs in collecting data for land cover 
classification in terms of vegetation density types 
(bare, medium, and high) that can be seen with 
the naked eye during observation and surveys. 
This study classified land cover with a focus on 
vegetation density, and the research location was 
chosen in accordance with the data requirements. 
Table 1 shows the results of categorizing three 
classes of vegetation density in terms of images 
based on the division of the available dataset [6]. 
 
Table 1. 
The images of vegetation density [5]–[8] 

Image Type of Vegetation 
Density 

   Bare 

   Medium 

   High 

 
B. Image Cropping  

Because the image data obtained with the 
drone was too large, the data was resized by 
cutting the image and selecting specific areas to 
be used as training data. Cropped image data 
aimed to facilitate the classification process, did 
not take up much space or memory, and the 
classification process was light, so it did not 
require a long time in the classification process 
later. The image data was cropped to 256 x 256 
pixels, reducing the image size to 159 KB. The 
cropped image data were classified into three 
types: bare, medium, and dense/high [5], [7]. 
Figure 9 shows the cropping results of the image 
data. 

 
Figure 9. Image data cropping 

 
C. Segmentation 

Image segmentation was used to distinguish 
between objects and backgrounds [25], [26]. The 
separation process was designed to make 
classification and calculations easier. The image 
segmentation process was based on the difference 
in the image grayscale. To convert a colour 
image with r, g, and b matrix values into a 
grayscale image, the segmentation method, 
namely thresholding, can be used to change the 
colour image. The most basic method for 
segmenting is image development or image 
thresholding [28]. Thresholding was used to 
change the number of gray degrees in an image to 
create a binary image with pixel intensity values 
of 0 or 1. 

 
D. Feature Extraction (GLCM) 

In this study, GLCM was used for feature 
extraction with three main features: correlation, 
homogeneity, and contrast. This method was 
used to classify images, recognize textures, 
segment them, recognize objects, and analyse 
their colours. In the neighborhood between pixels, 
GLCM had four angular directions: 0°, 45°, 90°, 

and 135°. When the angle was 0°, the pixel 

density was calculated by moving one distance to 
the right. Pixel adjacency was calculated using a 
45° angle and 1-pixel distance to the top right. 
The angle was 90°, and the pixel density was 

calculated by a 1-pixel distance on the top. A 
135° angle was used, and neighboring pixels 

were calculated by moving one pixel up [27]. The 
gray level of pixels was compared based on the 
angle or neighbors at 0°, 45°, 90°, and 135° in 

this study. The feature extraction process also 
compared the results of previously segmented 
images to those that had not been segmented. 

 

IV. FINDINGS 
 

A. Result of CNN Model 
The formation of network architecture in the 

CNN algorithm can affect the results of model 
accuracy. To produce an optimal model, network 
architecture was used during the training process. 
This study applied an input image with a 
resolution of 256x256x3, with the aim of 
reducing image size so that the classification 
process took as little time as possible. This study 
applied the second version of the ShuffleNet 
architecture, which included one convolutional 
layer (Conv5), three stages (consisting of 
convolutional and shuffle units), one pooling 
layer (using Maxpool), and fc. The input image 
in the ShuffleNet v2 model was 256 x 256 in size. 
The convolution and maximum pooling layers 
were added to the model’s initial position to 
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reduce the size of the feature graph. The 
convolution layer and pooling layer were 
replaced at the initial position by the 
convolutional layer (Conv1) with a 3 x 3 kernel, 
and the BN layer was added after Conv 1 and 
Conv 5. Figure 10 shows the flow of the 
proposed model. 

 
Figure 10. The ShuffleNet v2 model flow 

 
The results of training and testing accuracy 

were obtained after going through several 
processes in the CNN algorithm. The value for 
training accuracy can be found in the "Accuracy" 
column, while the value for testing accuracy can 
be found in the "Validation Accuracy" column. 
Accuracy was the value calculated by calculating 
the accuracy of the training dataset and model 
predictions. Validation accuracy is the value 
calculated by calculating the accuracy of the 
validation dataset and predictions from the model 
using validation dataset input data. This 
procedure used 50 epochs. Previously, epoch 
comparisons were performed to determine the 
accuracy and validation results of each training 
with a different number of epochs. This epoch 
comparison was intended to find the best model. 
The number of epochs compared ranges between 
25 and 100 [28]. The use of the epoch had a 
significant impact on the resulting accuracy. 
Because an epoch can improve accuracy, and the 
resulting accuracy was stable, it was critical to 
use the correct epoch in training data to achieve 
maximum accuracy. The table below compares 
training results based on the number of epochs. 

 
Table 2. 
Comparison of epochs 

Epoch Accuracy Loss Accuracy 
Validation 

Validation 
Loss 

Time 

25 97.46% 0.0686 71% 1.9176 20 min  
50 98.75% 0.0358 81.33% 1.2536 56 min 
75 99.08% 0.0279 74% 2.4516 1 h 32 

min 
100 99.29% 0.0218 74.17% 1.1251 2 h 20 

min 

 
The training model's accuracy with 50 epochs 

is 98.75% with a loss of 0.0218. The validation 
accuracy value for the 50 epochs is 81.33%, 
which is higher than that for the other epochs. 
According to the table, the closer to the highest 
epoch, the higher the accuracy obtained from the 
testing results. However, if more than 100 epochs 

are added, the accuracy value decreases because 
too many epochs can also affect the large number 
of datasets. The testing procedure used training 
data consisting of 2400 image data, 600 image 
data for each class, and 200 image data for each 
class. Table 3 shows the results of the confusion 
matrix. 

 
Table 3. 
Confusion matrix 

Matrix Predict Class 
Actual Class  Bare Medium High 

Bare 209 0 4 
Medium 9 92 88 
High 8 12 178 

 
Based on the results of Table 3, the model's 

predictions on the new data testing data show 
promising results. Although the prediction of the 
bare class is correctly classified as the bare class, 
up to four miss classifications from the bare 
image data input are classified as the high class. 
While the medium class prediction is correctly 
classified as the medium class, as many as 9 miss 
classifications from the input image data are 
classified as the bare class. In addition, up to 88 
misclassifications of input image data are 
classified as high. The high class prediction is 
correctly classified as the high class, but up to 8 
miss classifications from the high image data 
input are classified as the bare class. As many as 
12 misclassifications of input image data were 
classified as medium. The overall accuracy of the 
matrix and kappa accuracy are calculated as 
follows: 

Overall accuracy = 469/600 = 80% 
Kappa = 70% 
Thus, the model's accuracy with a 256x256 

input image and 600 image data obtained an 
accuracy value of 80% and a kappa accuracy of 
70%. 

 
B. Result of CNN Model with GLCM 

The addition of three GLCM features, namely 
contrast, homogeneity, and correlation, is the 
result of the next training model. The procedure 
involved extracting 3,000 GLCM result image 
data and producing 9,000 image data that were 
processed by the CNN. This study also compared 
the direction angles of 0°, 45°, 90°, and 135° to 

extract images per angle. The GLCM process 
used a total of 27,000 image data through the 
segmentation stage. This was done to determine 
how well each feature performed in the image 
classification process. 

For the GLCM process with CNN going 
through the segmentation stage, the results of 
data training with the CNN model and each 
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GLCM feature by going through the 
segmentation stage with 9,000 data for each 
angle, can be seen at an angle of 135° getting the 

highest validation accuracy value from other 
angles, namely 60.11% with a value validation 
loss of 0.8460. For each feature, this training 
procedure applied 50 epochs. This training 
process took approximately 20-30 minutes per 
corner. Table 5 shows the results of the GLCM 
training data per corner. 

 
Table 4. 
The comparison of training per angle 

Angle Accuracy Loss Validation 
Accuracy 

Validation 
Loss 

Time 

0° 95.24% 0.1377 50.28% 0.6096 29 min 6 
sec 

45° 94.99% 0.1346 50.39% 0.5526 31 min 20 
sec 

90° 96.42% 0.1055 59.94% 0.7616 31 min 12 
sec 

135° 96.26% 0.1176 60.11% 0.8460 31 min 11 
sec 

 
The training data is 9,000 images, and the test 

data is 1,800 images, with 3,000 images in each 
class. Table 5 shows the confusion matrix results 
for the CNN model process with GLCM that 
went through the segmentation stage. 

 
Table 5. 
Confusion matrix 

Matrix Predict Class 
Actual Class  Bare Medium High 

Bare 407 92 83 
Medium 54 419 137 
High 83 218 307 

 
According to the results in Table 5, the 

model's prediction results on new data testing 
data are poor. Although the prediction of the bare 
class is correct, as many as 92 miss 
classifications from the bare image data input are 
classified as medium. In addition, up to 83 miss 
classifications from the bare image data input are 
classified as high. While the medium class 
prediction was correctly classified as the medium 
class, as many as 54 miss classifications from the 
input image data were classified as the bare class. 
In addition, 137 misclassifications of medium 
image data input were classified as high. The 
high class prediction was correctly classified as 
the high class, but up to 83 miss classifications 
from the high image data input were classified as 
the bare class. In addition, 218 miss 
classifications from the high image data input 
were classified as medium. The overall accuracy 
of the matrix and kappa accuracy are calculated 
as follows:  

Overall Accuracy = 1133/1800x100% = 
62,99% 

Kappa = 44,37%  
Thus, with an input image of 256x256 pixels 

and 1800 image data, the model produced an 
accuracy value of 62.99% and a kappa accuracy 
of 44.37%. 

 

V. DISCUSSION 
When the CNN model without the GLCM 

process was compared to the CNN model with 
the GLCM process, the comparison was quite far 
from the accuracy values obtained. The CNN 
model achieved an accuracy of 80%, while the 
CNN model with GLCM achieved 62.99% 
segmentation. This showed that the CNN model 
outperformed the GLCM process. According to 
the findings of the analysis, this occurred because 
the gray level in the image was leveled during the 
GLCM process, resulting in white and black 
colors in the image. The colors in the original 
image changed to white and black, resulting in a 
classification error. The GLCM process rendered 
the image colorless and rendered the entire image 
black.  

During the testing of new data, there was a 
misclassification caused by nearly identical 
vegetation types. The input data for the CNN 
model was original image data with different 
types of vegetation, but based on the researcher's 
analysis, even though the texture between 
medium and high vegetation was different, the 
CNN model still had difficulty distinguishing and 
recognizing medium and high classes if the data 
simultaneously has the characteristics of an 
image that was filled with vegetation even though 
the type and texture of the vegetation was 
different. The CNN model with the GLCM 
method had many misclassifications. The first 
reason was that the original image's colour had 
changed, making it difficult for the model to 
distinguish between classes. The second issue 
was that the type and texture of the vegetation 
were not visible in the image, so when predicting 
with the CNN and GLCM models on prototypes, 
the bare class data was read as medium class. 
High class reads as medium class. This research 
is the only to classify vegetation density in 
tropical peatland.  
 

VI. CONCLUSION 
The conclusion is that comparing the CNN 

model without the GLCM process to the CNN 
model with the GLCM process produces a 
comparison that is quite far from the accuracy 
value obtained. The CNN model achieves an 
accuracy of 80%, while the CNN model with 
GLCM achieves 62.99% segmentation. This 
demonstrates that the CNN model outperforms 
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the GLCM process in the land cover 
classification. This demonstrates that the image 
processing process has a significant impact on the 
stages of classification and prediction of 
vegetation density in tropical peatland. 
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