UV-Visible Spectrophotometric as a Prospective Tool in Neonatal Sepsis

2

3 Abstract

- 4 Background: This present study was aimed to employ the UV-Vis spectroscopic techniques
- 5 to detect the changes in blood of Nenonatal Sepsis (NS) subject for a deeper understanding in
- 6 the pathomechanism of NS.

7 Methods: The cross-sectional prospective study was conducted from February to May 2017

- 8 in the Neonatology Division, Department of Pediatric, Ulin General Hospital/Faculty of
- 9 Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia.
- 10 Blood specimens were taken from newborns, of which 15 each of newborns at risk of sepsis
- 11 and without risk of sepsis. Data was analyzed by using Mann-Whitney U test.
- 12 **Results:** The result of this present study suggested that there is a significant difference of the
- 13 averange of absorbance ratio parameter using UV-Vis spectroscopic spectrophotometric
- 14 methods on the case group compare to the control group. Also, there is a significant
- 15 difference between AOPPs and SCN level in newborn at risk of sepsis.
- 16 **Conclusion:** In conclusion, the present study demonstrated there were significant differences
- 17 between the average of absorbance ratio parameter for protein and oxy hemoglobin region
- 18 using UV-Vis spectroscopic spectrophotometric methods in healthy subjects and newborn at
- 19 risk of sepsis.
- 20

22

21 Keywords: Neonatal Sepsis, Oxidative Stress, Spectrophotometric.

Commented [InaBJ1]: Terminology of The Study Design is not appropriate because design Cross Sectional cannot be combined with Prospective Study(longitudinal Study). I think Case Control Method Or Cross Sectional Method more appropriate. You have to mention this in the Methods too. Answer : I agreed to delete prospective word because this is the cross sectional method research.

Commented [IH2]: Delete this word Commented [IH3]: Change the word of spectroscopic with spectrophotometric

Commented [IH4]: Delete this word
Commented [IH5]: Change the word of spectroscopic with
constraint terration

23 Introduction

Neonatal Sepsis (NS) is a clinincal syndrome that is charazterized by systemic signs 24 and symptoms of infection in neonates which is an important cause of mortality in newborns 25 and life threatening disorder in infants (1-2). Incidence rate of neonatal sepsis in developed 26 countries ranged between 3-5 per 1,000 live births. WHO (2007) reported the Case Fatality 27 28 Rate (CFR) in the case of neonatal sepsis in the world is still high by 40% (3). In 2015, 4.5 million children died in first year of life (4). Forty five percents occurred in first month of life 29 30 (newborn babies). The causes of death in infants were various. Neonatal sepsis contributed for seven percent of the total cause of infant mortality (5,6). The current gold standard for 31 32 diagnosis of sepsis is blood culture, suffers from low sensitivity and a reporting delay of approximately 48-72 hours (7). 33

34 The pathomechanism of NS is remain unclear. Some previous studies suggested that the pathomechanism of NS was through oxidative stress mechanism (2,8-9). Infectious agents 35 in NS caused the activation neutrophils which promote a further reaction to activate NADPH 36 oxidase. These activation will cause the formation reactive oxygen species (ROS). Also, the 37 38 activation of neutrophil induced the releasing of Myeloperoxidase (MPO). MPO use H₂O₂ to catalyses the oxidation of halide (Cl-, Br-) and pseudohalide (thiocyanate ion, SCN) to form 39 hypothiocyanous acid (HOSCN). The ROS, halide and pseudohalide oxidation oxidized 40 41 halide and pseudohalide is known to play an important role in killing invading parasites and pathogens. Furthermore, the ROS, halide and pseudohalide oxidation products could 42 oxidizied protein and resulted in the formation of oxidized protein known as Advance 43 44 Oxidation Protein Products (AOPPs) (2,10).

45 UV-Visible <u>spectrophotometric</u> <u>spectroscopic</u> methods was one known method that
46 have been used extensively for several qualitative analysis of medical biological samples

Commented [A6]: I agreed

Commented [A7]: I agreed to change these words to "oxidized halide and pseudohalide"

Commented [InaBJ8]: Spetroscopic or spectrophotometric? The title uses "spectrophotometry" term. The author should understand clearly the difference between the two. Answer : I agreed to used spectrophotometric word for this term

47	such as, blood plasma, sera, or tissues (11). Spectroscopy is a technique that measures the		
48	interaction of molecules with electromagnetic radiation. Electromagnetic radiation in this		
49	method is obtained from light that will trigger the excitation of electrons in a molecule,	_	Commented [IH9]: Delete this sentence
50	Furthermore, when the light was absorbed, a spectrum is obtained as a function of its		
51	frequency of wavelength. It depend on chemical nature on the molecular environment of its		
52	chromophores. Absorption spectroscopy is therefore an excellent technique for following		
53	ligand-binding reactions, enzyme catalysis and conformational transitions in proteins and		
54	nucleic acids (12).		
55	Generally, the blood experiences significant changes in compound and biochemical		
56	properties in all diseases. The use of an examination method such as UV-Visible (UV-Vis)		
57	spectroscopy spectrophotometric to determine changes in blood is an inevitability. This is	_	Commented [IH10]: Delete this word
58	due to reduces reduction in time, resources, and cost (11). The advantage in the ever		Commented [IH11]: Change the word of s spectrophotometric
59	improving sensitivity of contemporary spectrometers with sophisticated computational		Commented [A12]: I agreed to delete this "reduction"
60	techniques proved that UV-Visible (UV-Vis) spectroscopy spectrophotometric could be	_	Commented [IH13]: Delete this word
61	exploited to explore the various biochemical alterations on the molecular and structural		Commented [IH14]: Change the word of s spectrophotometric
62	differences of the biofluids of the human body (13).		
63	In recent years, spectroscopy spectrophotometric was used for the diagnosis for		Commented [IH15]: Delete this word
64	several diseases. Kanagathara et al and Ibrahim et al has been employed UV-Vis		Commented [IH16]: Change the word of s spectrophotometric
65	spectroscopic spectrophotometric methods to study the spectral differences in the serum of	_	Commented [IH17]: Delete this word
66	normal blood samples (11,14). Gunasekaran et al has been demonstrated using UV-Vis		Commented [IH18]: Change the word of s spectrophotometric
67	spectroscopic spectrophotometric method to differentiate the healthy sera from the jaundice,		Commented [IH19]: Delete this word
68	leukemia, anemia, cirrhosis liver, thalassemia and diabetes (13,15-16). Still, there is no study		Commented [IH20]: Change the word of s spectrophotometric
69	in the literature examining the characteristics of blood in NS using UV-Vis spectroscopic		Commented [IH21]: Delete this word

spectrophotometric methods. Therefore, the present experimental study aimed to employ the 70

ented [IH10]: Delete this word ented [IH11]: Change the word of spectroscopic with

ented [A12]: I agreed to delete this word and change it to

ented [IH13]: Delete this word ented [IH14]: Change the word of spectroscopic with photometric

ented [IH15]: Delete this word ented [IH16]: Change the word of spectroscopic with photometric

ented [IH17]: Delete this word ented [IH18]: Change the word of spectroscopic with hotometri

ented [IH19]: Delete this word ented [IH20]: Change the word of spectroscopic with hoto

Commented [IH22]: Change the word of spectroscopic with spectrophotometric

71	UV-Vis spectroscopic spectrophotometric techniques to detect the changes in blood of NS
72	subject and also for a deeper understanding the pathomechanism of NS.
73	
74	
75	Methods
76	1. Subjects

These cross-sectional study was conducted on infants with and without risk of sepsis 77 78 after informed consent was obtained from them. It was approved by the Ethics Commission of the Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South 79 80 Kalimantan, Indonesia. The protocol of this study was approved by the Ethics Committee of Mangkurat University Faculty of Medicine, Lambung (No. 331/KEPK-FK 81 82 UNLAM/EC/IV/2017) according to the Declaration of Helsinki. The participants gave us their written informed consent before the study. The study was conducted from February to 83 May 2017 in the Neonatology Division, Department of Pediatric, Ulin General 84 Hospital/Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South 85 86 Kalimantan, Indonesia. All laboratory tests were conducted at Department of Medical Chemistry/ Biochemistry, Faculty of Medicine Lambung Mangkurat University, Banjarbaru, 87 South Kalimantan, Indonesia. 88

A total of 30 infants subjects were recruited for this study. Subjects were divided into 2 groups: group I were infants at risk of sepsis and served as a case group, while group II were infants without risk of sepsis and served as a control group. Subjects in the sepsis risk group were included on the basis of having at least 1 major criteria or 2 minor criteria for sepsis according to The American Congress of Obstetricians and Gynecologist (ACOG) guidelines (17-18). Major risk criteria were premature ruptured of membranes (PROM) for > _____

Commented [IH24]: Change the word of spectroscopic with

Commented [IH23]: Delete this word

spectropho

Commented [IH25]: I change the with these, and added the word of cross-sectional for answer the comment og InaBJ1

Commented [InaBJ26]: inclusion and exclusion criteria for each group? Answer : I agreed to clarify the inclusion and exclusion criteria. You can view in the several sentences in the end of this paragraph.

$M201723\ -\text{UV-V} is ible\ Spectrophotometric\ Tool\ in\ Neonatal\ Sepsis$

95	24 hours, maternal fever with intrapartum temperature > 38°C, chorioamnionitis, fetal heart		
96	rate persisting at > 160 times/min or bad smelling of amniotic fluid. Minor risk criteria were		
97	PROM for > 12 hours, maternal fever with intrapartum temperature > 37.5°C, low Apgar		
98	score (<5 at the 1st min, <7 at the 5th min), very low birth weight baby (VLBWB) of <1500		
99	gr, gestational age < 37 weeks, multiple pregnancy, bad smelling of vaginal discharge,		
100	maternal urinary tract infection (UTI) or suspected untreated maternal UTI. Age and gender		
101	matched healthy newborns were chosen as controls. Newborns with birth asphyxia, low birth		
101	weight, preterm and congenital malformations were excluded from this study,		Formatted: English (United States)
102	weight, preterm and congenitar mationnations were excluded nom this study.		
103			
104	2. Samples collection		Commented [InaBJ27]: The way of collection of sample is not
105	Sampling was carried out by accidental sampling method, with criteria specified in	-	clearly stated; how is sample size as 15 for cases and 15 for control was collected. What is the basic assumption for calculation of sampling minimal? What is the sampling procedure to get 15 for cases and 15 for control?
106	subjects section as mentioned earlier. The sampling took place from February-May 2017. In		Answer : I agreed to clarify the way of collection of sample. I add a clearer explanation.
107	that time, 30 samples were obtained, with 15 samples of newborn at risk of sepsis and 15		
108	normal samples Samples of blood were taken from umbilical cord (5 ml each) and collected		Commented [IH28]: This several sentences is the way of sample collection.
109	using vacutainers containing EDTA. The samples were centrifuged for 15 min at 2000 rpm		Commented [IH29]: Delete this sentences
110	and stored at 20C until further analysis. Each sample then washed with cold saline phosphate		Commented [InaBJ30]: Which part of the blood were used for
111	buffer with pH 7.4 for the spectoscopic analysis, and the estimation of SCN and AOPPs		analysis? Plasma? Is there any aliquoting procedure after centrifugation? Please give more detail procedure. Answer : I agreed to clarify the way of collection of sample. I add a
112	levels.		clearer explanation. We used blood for analysis without centrifugation and aliquoting procedure.
113			Commented [IH31]: This sentences was made to answer the InaBJ30 comment.
114			
115	3. Spectroscopic analysis		Commented [InaBJ32]: What about interference in
116	Each blood sample was diluted with normal saline at concentration of 5 μ L/mL. The		spectroscopic analysis, such as: hemolysis, icterus? If there is any, please mention in the methods section. Also, please mention the instrument used for spectroscopic analysis. Answer : I agreed. I add the instrument used for spectroscopic
117	spectra were scanned in the region between 200-700 nm. Amide chain of proteins present in		analysis in this section. I add kind of proteins we mean too in this section.
118	the blood absorbs strongly at 210 nm. Absorption of tyrosine and tryptophan is at around 280		

119	nm. Also the absorptions at 417, 543 and 578 nm are due to d-f transition of CO-Oxy	
120	hemoglobin (13,15). Each blood sample was diluted with normal saline at concentration of 5	
121	$\mu L/mL.$ The spectra were scanned in the region between 200-700 nm using T80+ UV/VIS	
122	spectrometer at Medical Chemistry/Biochemsitry Laboratory, Faculty of Medicine, Lambung	
123	Mangkurat University, Banjarbaru, South Kalimantan, Indonesia. Amide chain of proteins	
124	present in the blood absorbs strongly at 210 nm. Absorption of tyrosine and tryptophan is at	
125	around 280 nm. Also the absorptions at 417, 543 and 578 nm are due to d-f transition of CO-	
126	Oxy-hemoglobin (13,15). According to Gunasekaran et al. (15) from these spectral	
127	differences, three absorbance ratio could be measured. They were A278/A210 in the protein	
128	region and A543/A417, A578/A417 in the oxy-hemoglobin region.	
129		
130		
131	4. SCN and AOPPs level analysis	
131 132	4. SCN and AOPPs level analysis SCN concentration was measured spectrophotometrically as described by Aune and	Formatted: Normal, No bullets or numbering
		Formatted: Normal, No bullets or numbering
132	SCN concentration was measured spectrophotometrically as described by Aune and	Formatted: Normal, No bullets or numbering Commented [A33]: I add the procedure to measuring SCN and AOPP in this section.
132 133	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by	Commented [A33]: I add the procedure to measuring SCN and
132 133 134	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by	Commented [A33]: I add the procedure to measuring SCN and
132 133 134 135	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat et al., with slight modification (10).	Commented [A33]: I add the procedure to measuring SCN and
132 133 134 135 136	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat et al., with slight modification (10). 4.5. Statistical Analysis	Commented [A33]: I add the procedure to measuring SCN and
132 133 134 135 136 137	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat et al., with slight modification (10). 4.5. Statistical Analysis The comparison of absorbance between healthy blood and risk of sepsis blood were	Commented [A33]: I add the procedure to measuring SCN and
132 133 134 135 136 137 138	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat et al., with slight modification (10). 4.5. Statistical Analysis The comparison of absorbance between healthy blood and risk of sepsis blood were examined by Mann Whitney U test with p < 0.05. Data analysis using SPSS for Windows	Commented [A33]: I add the procedure to measuring SCN and
132 133 134 135 136 137 138 139	SCN concentration was measured spectrophotometrically as described by Aune and Thomas. AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat et al., with slight modification (10). 4.5. Statistical Analysis The comparison of absorbance between healthy blood and risk of sepsis blood were examined by Mann Whitney U test with p < 0.05. Data analysis using SPSS for Windows	Commented [A33]: I add the procedure to measuring SCN and

understanding in phmarceutical, biological material, and pathomechanism of a disease. It was
first described by Gunasekaran et al. (13,15-16) study which is investigated the spectral
differencies of several diseases like diabetes, leukemia, and thyroid. In this present study we
try to employed the spectral differencies between healthy serum blood and serum blood of
newborn at risk of sepsis. The result is presented in Table 1.

Table 1 gives the statistical results of the analysis of UV-Visible spectral data in protein and oxy heemoglobin. The data clearly shows the discrimination of the newborn at risk of sepsis blood from that of the healthy one. The result data indicated that the absorbance ratio of oxy-heemoglobin is lower in newborn at risk of sepsis. The decreasing of this ratio may be due to the changes in oxy hemoglobin.

It is well known that sepsis will activate the natural immune system which are mostly 153 154 roled by neutrophils. In this condition, neutrophil will inserted into infected tissue to induced a process known as respiratory burst. This process use an oxygen to form ROS which is 155 useful to attack the bacterial pathogens (2). The result clearly indicated that there is a 156 structural chages in oxy-heemoglobin This is thought to be due to oxygen release from oxy 157 158 heemoglobin used to produce ROS such as, radical superoxide (•O2), hydrogen peroxide (H2O2), and radical hydroxyl. Also, the release of oxygen from oxy hemoglobin will lead to 159 hypoxia. Hypoxia it self will increased the ROS level. The basic mechanism how the hypoxia 160 161 increased the ROS level is mitochondria dysfunction which is activate some enzymes some of the enzymes that play a role in the formation of ROS-like NADPH oxidase and superoxide 162 dismutase (SOD) (19). 163

The result data from table 1 also shows that the absorbance ratio of protein is also lower in newborn at risk sepsis. This result indicated that the protein levels in blood of newborn at risk of sepsis was decreased. This may be due to protein damage due to oxidative Commented [InaBJ34]: Serum or plasma? In the methods, the author mentioned that blood were collected using EDTA vacutainer tubes. Answer : I change the "serum" word with "blood". It is not serum or plasma but we use blood for the analysis. I already mentioned in the

Commented [IH35]: Add "-" in this part Commented [IH36]: Delete the "a" letter on haemoglobin word. I rather to use hemoglobin than haemoglobin.

method section.

Commented [IH37]: Delete the "a" letter on haemoglobin word. I rather to use hemoglobin than haemoglobin. Commented [IH38]: Add "-" in this part

Commented [IH39]: Add "-" in this part

Commented [IH40]: Delete the "a" letter on haemoglobin word. I rather to use hemoglobin than haemoglobin.

Commented [IH41]: Delete the "a" letter on haemoglobin word. I rather to use hemoglobin than haemoglobin.

Commented [InaBJ42]: Please be consistent in pronounciating haemoglobin or hemoglobin? Answer : I rather to use hemoglobin than haemoglobin. I already change all haemoglobin to hemoglobin.

Commented [IH43]: Delete this two word.

Commented [InaBJ44]: Ratio of which proteins? Please mention clearly in methods section. Answer : I explain clearer the proteins that we mean in methods section

stress conditions. To investigate how the protein damage during sepsis condition, in this
present study we also measured the level of SCN and AOPPs. The results shows are shown in
Table 2.

The result from Table 2 shows that the level of SCN is higher in the case group compare to cotrol group. It is in line with our previous reports which investigated the comparison of SCN levels in saliva of newborn at risk of sepsis with and without antibiotic therapy. In that study, the level of SCN seems more higher at newborn with risk of sepsis without antibiotic theraphy (10). The increasing of SCN level may be due to the activation of MPO which is used H_2O_2 and SCN as a co-substrate to form hypothiocyanate acid (HOSCN) whic is also useful to attack bacterial pathogens (20).

Both ROS and HOSCN that produced in sepsis condition are powerful oxidants which promote a further raction result in host tissue damage (21). One of the targets that can be damaged by the molecule is protein. It is in line with the result from the table 2. The result from table 2 indicated that the level of AOPPs is increase. AOPPs in known as a novel marker in several condition which is related to oxidative stress (10). AOPPs is known as a cross-linking protein products which is formed by a modification of amino acid caused by oxidation by an ROS (22-23).

184

185 Conclusion

In conclusion, the present study demonstrated there were significant differences between the average of absorbance ratio parameter for protein and oxy hemoglobin region using UV-Vis spectroscopic methods in healthy subjects and newborn at risk of sepsis. It can be concluded that there were changes in blood of newborn at risk of sepsis and it may explain the pathomechanism of neonatal sepsis for our better understanding. This result study also Commented [InaBJ45]: Please mention the procedure for measuring SCN and AOPPs in methods section. Answer : I agreed to add the procedure to measuring SCN and AOPP in methods section

Commented [IH46]: I agree to delete this word Commented [IH47]: I agree with this change

- 191 suggests that UV-visible spectroscopic may be useful as a tool <u>to for early diagnosis of NS.</u>
- 192 Further research is needed to explore spectrophotometric analysis as a diagnosis method of
- 193 <u>NS.</u> the spectroscopic analysis as a tool for diagnosis of NS.

194

Commented [InaBJ48]: Repetition of the previous sentences. Please rephrase or find another statement. Answer : I change the previous sentences and change it with other statement.

195	Reference	ces
196	1. Bokun L	V, Huang J, Yuan H, Yan W, Hu G, Wang J. Tumor necrosis factor-alpha as
197	a diagnos	stic marker for neonatal sepsis: A meta-analysis. Scientific World J. 2014;
198	2014: 1-	-14. DOI: 10.1155/2014/471463.
199	2. Yunanto	A., Firdaus RT, Triawanti, Suhartono E. Advance oxidation protein products
200	(AOPPs)	of newborn at risk of sepsis as novel parameter for early-onset neonatal
201	sepsis. In	nt J Biosci Biochem Bioinforma. 2014; 4 (2): 90–3.
202	3. Simarma	ta YBC, Harahap U, Djipta GD. Identification of risk factors caused neonatal
203	sepsis of	f premature neonatus in Adam Malik General Hospital Center. Int J
204	PharmTe	ech. 2016; 9 (11): 54–7.
205	4. Global H	Health Observatory Data: Infant Mortality [http://www.who.int/gho/child
206	health/mo	ortality/neonatal_infant/en/], accessed date 13th June 2017.
207	5. Global H	Health Observatory Data: Causes of Child Mortality. [http:// www.who.
208	int/gho/ c	child_health/mortality/causes/en/], accessed date 13th June 2017.
209	6. Global	Health Observatory Data: Neonatal Mortality.
210	[http://ww	ww.who.int/gho/child_health/mortality/neonatal_text/en/], accessed date 13th
211	June 201	7.
212	7. Venkates	sh M, Flores A, Luna RA. Molecular microbiological methods in the
213	diagnosis	s of neonatal sepsis. Expert Rev Anti Infect Ther. 2010; 9: 1037-48.
214	8. Fink MP	P. Cytopathic hypoxia: Mitochondrial dysfunction as mechanism contributing
215	to organ	dysfunction in sepsis. Crit Care Clin. 2001; 1: 219-37.
216	9. Cancelier	r AC, Petronilho F, Reinke A, Constantino L, Machado R, Ritter C, Dal-
217	Pizzol F.	Inflammatory and oxidative parameters in cord blood as diagnostic of early-
218	onset nec	onatal sepsis: A case-control study. Pediatr Crit Care Med. 2009; 10 (4): 467-
		10

219	71.
220	10. Yunanto A, Iskandar, Suhartono E. In-vitro effects of some antibiotic drugs on saliva
221	thiocyanate and oxidation protein products levels on newborn at risk of sepsis. IJPCR.
222	2016; 8 (1): 86-9.
223	11. Ibrahim MSM, Bajaj MM, Singh VR, Ruchika, Farhana SAS. Spectroscopic study of
224	blood samples using FTIR and UV-Visible spectrometers. Internat J Bioscience.
225	2014; 3: 13-6.
226	12. Schmid F. Biological Macromolecules: UV-visible Spectrophotometry. Encyclopedia
227	of Life Sciences. 2001; 1–4. DOI: 10.1038/npg.els.0003142.
228	13. Gunasekaran S, Natarajan RK, Renganayaki V, Rathikha R. FTIR and UV visible
229	spectrophotometric approach to discriminate leukemic sera. Asian J. Spectro. 2008;
230	20 (4): 2521–30.
231	14. Kanagathara N, Thirunavukkarasu M, Jeyanthi EC, Shenbagarajan P. FTIR and UV-
232	Visible spectral study on normal blood samples. Int. J Pharm Bio Sci. 2011; 1(2): 74-
233	81.
234	15. Gunasekaran S, Nataraian RK, Renganayaki V. UV Visible Spectrophotometric
235	Approach and Absorption Model for the Discrimination of Diseased Blood. Asian J.
236	Chem. 2008; 20 (1): 48–54.
237	16. Gunasekaran S, Uthra D. FTIR and UV-Visible spectral study on normal and jaundice
238	blood samples. Asian J.Chem. 2008; 20 (7): 5695-703.
239	17. Bryce J, Boshi-Pinto C, Shibuya K, Black RE. WHO estimates the causes of death in
240	children. Lancet. 2005; 365: 1147-52.
241	18. Aggarwal R, Sarkar N, Deorari AK, Paul VK. Sepsis in the newborn. Indian J Pediatr.
242	2008; 75 (3): 261-6.

12

243	19. Gao J, Ding XS, Zhang YM, Dai DZ, Liu M, Zhang C, Dai Y. Hypoxia/oxidative
244	stress alters the pharmacokinetics of CPU86017-RS mitochondrial dysfunction and
245	NADPH oxidase activation. Acta Pharm Sinica. 2013; 34: 1575-84.
246	20. Lestarisa T, Alexandra FD, Jelita H, Suhartono E. Myeloperoxidase as an indicator of
247	liver cells inflammation induced by mercury. IJPCR. 2016; 8 (11): 1516-21.
248	21. Lane AE, Tan JTM, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidase-
249	derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell
250	signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages.
251	Biochem J. 2010; 430: 161-9. DOI:10.1042/BJ20100082.
252	22. Suhartono E, Nijka JA, Anhar VY, Sari RA, Edyson, Marisa D. Anti-lipid
253	peroxidation activities of three selected fruits juices against cadmium induced liver
254	damage in vitro. J. Trop Life Science. 2015; 5 (2): 77-9.

255 23. Aflanie I, Sari NN, Suhartono E. Oxidative and chlorinative stress biomarkers in liver
256 cells of rats exposed to cyanide in-vitro. IJPCR. 2016; 8 (10): 1441-5.

Tables 258

259 260 Table 1. UV-Visible spectral analysis of absorbance ratio parameters of healthy and newborn at risk of sepsis

> Region Intensity ratio parameter Average ± SD A278/A210 Protein Normal 13.95 ± 5.714 Sepsis $1.963 \pm 0.776*$ A543/A417 1.725 ± 0.758 Normal $0.852 \pm 0.252*$ Sepsis Oxy hemoglobin A578/A417 $\begin{array}{c} 1.543 \pm 0.876 \\ 1.258 \pm 0.126 * \end{array}$ Normal $\frac{$Sepsis$}{$*$ Values are significantly different from (P < 0.05), according to Mann-Whitney U tests.}$

261 262

263 Table 2. SCN and AOPPs level comparison between case and control group 264

	Parameters	Control group	Case group	
	SCN (mM)	0.232 ± 0.053	0.667 ± 0.053	
	AOPPs (µM) 0.		3.867 ± 1.340	
* Val	* Values are significantly different from (P < 0.05), according to Mann-Whitne			

265 266

M201723 — UV-Visible S	pectrophotometric Tool in Neonatal Sepsis

1	UV-Visible Spectrophotometric as a Prospective Tool in Neonatal Sepsis				
2					
3	Eko Suhartono ^{1,*} , Ari Yunanto ² , Edi Hartoyo ² , Nia Kania ³ , Adelia Anggraini Utama ² ,				
4	Ratih Kumala Sari ² , Niarsari Anugrahing Putri ² , Iskandar Thalib ^{2,4}				
5	¹ Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Jl.				
6	Ahmad Yani Km. 36, Banjarbaru 70712, South Kalimantan, Indonesia				
7	² Department of Child Health, Faculty of Medicine, Lambung Mangkurat University, Jl. Veteran No. 128,				
8	Banjarmasin 70232, South Kalimantan, Indonesia				
9	³ Research Center for Toxicology, Cancer, and Degenerative Disease, Department of Pathology, Ulin General				
10	Hospital/Faculty of Medicine, Lambung Mangkurat University, Jl. Veteran No. 128, Banjarmasin 70232, South				
11	Kalimantan, Indonesia				
12	⁴ Research and Development Unit, Mutiara Bunda Mother and Child Hospital, Jl. Taisir No. 2, Martapura 70614,				
13	South Kalimantan, Indonesia				
14 15 16 17	*Corresponding Author. Email: esuhartono@unlam.ac.id				
18	Abstract				
19	Background: This present study was aimed to employ the UV-Visible UV-Vis				
20	spectroscopic sector techniques to detect the changes in blood of Nenonatal				
21	Sepsis (NS) subject for a deeper understanding in the pathomechanism of NS.				
22	Methods: The cross-sectional study was conducted from February to May 2017 in the				
23	Neonatology Division, Department of Pediatric, Ulin General Hospital/Faculty of Medicine,				
24	Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia. Blood				
25	specimens were taken from newborns, of which 15 each of newborns at risk of sepsis and				

26 without risk of sepsis. Data was analyzed by using Mann-Whitney U test.

Commented [IH1]: Agree with the deletion of this word Commented [InaBJ2]: Abbreviation for? Commented [IH3R2]: This is the abbreviation for UV-Visible. My correction is highlight with green mark Commented [InaBJ4]: Spectrophotometry Commented [IH5R4]: I think it should be spctrophotmetry not spectroscopic. Formatted: Highlight

1. 00

c .1

2

	27	Results: The result of this present study suggested that there is a significant difference of the	_	Commented [IH6]: Agree with the deltion
			\sim	Formatted: Highlight
	28	averange of absorbance ratio parameter using UV-Vis spectrophotometric methods on the		Formatted: Highlight
	29	case group compare to the control group. Also, there is a significant difference between		
1	30	AOPPs) and thiocyanate (SCN level in newborn at	_	Commented [InaBJ7]: Abbreviation for?
	31	risk of sepsis.		Commented [IH8R7]: AOPPs for Advanced Oxidation Protein Products and SCN for thiocyanate
				Formatted: Highlight
	32	Conclusion: In conclusion, the present study demonstrated there were significant differences		Formatted: Highlight
				Formatted: Highlight
	33	between the average of absorbance ratio parameter for protein and oxy hemoglobin region		Formatted: Highlight
1	24	uning TIX/ V/a considerable to use the V/a considerable to use the day in the labor exclusion of the		Formatted: Highlight
	34	using UV-Vis spectrophotometric Vis spectrophotometric methods in healthy subjects and		Formatted: Highlight
	35	newborn at risk of sepsis.		
	36			
	37	Keywords: Neonatal Sepsis, Oxidative Stress, Spectrophotometric.		

39 Introduction

Neonatal Sepsis (NS) is a clinincal syndrome that is charazterized by systemic signs 40 and symptoms of infection in neonates which is an important cause of mortality in newborns 41 and life threatening disorder in infants (1-2). Incidence rate of neonatal sepsis in developed 42 countries ranged between 3-5 per 1,000 live births. WHO (2007) reported the Case Fatality 43 44 Rate (CFR) in the case of neonatal sepsis in the world is still high by 40% (3). In 2015, 4.5 million children died in first year of life (4). Forty five percents occurred in first month of life 45 46 (newborn babies). The causes of death in infants were various. Neonatal sepsis contributed for seven percent of the total cause of infant mortality (5,6). The current gold 47 48 standard for diagnosis of sepsis is blood culture, suffers from low sensitivity and a reporting delay of approximately 48-72 hours (7). 49

The pathomechanism of NS is remain unclear. Some previous studies suggested that the pathomechanism of NS was through oxidative stress mechanism (2,8-9). Infectious agents in NS caused the activation neutrophils which promote a further reaction to activate NADPH oxidase. These activation will

cause the formation reactive oxygen species (ROS). Also, the activation of neutrophil induced the releasing of Myeloperoxidase (MPO). MPO use H₂O₂ to catalyses the oxidation of halide (Cl-, Br-) and pseudohalide (thiocyanate ion, SCN) to form hypothiocyanous acid (HOSCN). The ROS, oxidized halide and pseudohalide is known to play an important role in killing invading parasites and pathogens. Furthermore, the ROS, halide and pseudohalide oxidation products could oxidizied protein and resulted in the formation of oxidized protein known as Advance Oxidation Protein Products (AOPPs) (2,10).

61 UV-Visible spectrophotometric methods was one known method that have been used62 extensively for several qualitative analysis of medical biological samples such as, blood

Commented [InaBJ9]: Once being shortened in the beginning, no need to write the full term. NS is enough.

Commented [IH10R9]: I agree to change the Neonatal Sepsis with NS

Formatted: Highlight

3

Commented [InaBJ11]: Abbreviation for? Commented [IH12R11]: NADPH is abbreviation for Nicotinamide Adenine Dinuclotide Phosphate Formatted: Highlight Formatted: Highlight Formatted: Highlight

63	plasma, sera, or tissues (11).
64	the interaction of molecules with electromagnetic radiation. Furthermore, when the light was
65	absorbed, a spectrum is obtained as a function of its frequency of wavelength. It depend on
66	chemical nature on the molecular environment of its chromophores. Absorption
67	spectroscopyThis method is therefore an excellent technique for following ligand-binding
68	reactions, enzyme catalysis and conformational transitions in proteins and nucleic acids (12).
69	Generally, the blood experiences significant changes in compound and biochemical
70	properties in all diseases. The use of an examination method such as UV-Visible (UV-Vis)
71	spectrophotometric to determine changes in blood is an inevitability. This is due to reduction
72	in time, resources, and cost (11). The advantage in the ever improving sensitivity of
73	contemporary spectrometers with sophisticated computational techniques proved that
74	Visible (UV-Vis) spectrophotometric could be exploited to explore the various biochemical
75	alterations on the molecular and structural differences of the biofluids of the human body
76	(13).

In recent years, spectrophotometric was used for the diagnosis for several diseases. 77 78 Kanagathara et al and Ibrahim et al has been employed UV-Vis spectrophotometric methods to study the spectral differences in the serum of normal blood samples (11,14). Gunasekaran 79 et al has been demonstrated using UV-Vis spectrophotometric method to differentiate the 80 81 healthy sera from the jaundice, leukemia, anemia, cirrhosis liver, thalassemia and diabetes (13,15-16). Still, there is no study in the literature examining the characteristics of blood in 82 NS using UV-Vis spectrophotometric methods. Therefore, the present experimental study 83 aimed to employ the UV-Vis spectrophotometric techniques to detect the changes in blood of 84 NS subject and also for a deeper understanding the pathomechanism of NS. 85

Formatted: Highlight

Commented [InaBJ13]: If the author was meant to describe the method they used in this study, then they better be focus only to the method they used. If they used spectrophotometry, then just elaborate more about this

method.

There's no need to describe the spectroscopy method.

Commented [IH14R13]: I think the word spectroscopy in this sentence is not quite right, and should be replaced with spectrophotometry.

Commented [InaBJ15]: Once being shortened in the beginning, no need to write the full term
Commented [IH16R15]: I agrre with your suggestion

4

87

88 Methods

89 1. Subjects

These cross-sectional study was conducted on infants with and without risk of sepsis 90 after informed consent was obtained from them. It was approved by the Ethics Commission 91 92 of the Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia. The protocol of this study was approved by the Ethics Committee of 93 94 Faculty of Medicine, Lambung Mangkurat University (No. 331/KEPK-FK UNLAM/EC/IV/2017) according to the Declaration of Helsinki. The participants gave us 95 their written informed consent before the study. The study was conducted from February to 96 May 2017 in the Neonatology Division, Department of Pediatric, Ulin General 97 Hospital/Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South 98 Kalimantan, Indonesia. All laboratory tests were conducted at Department of Medical 99 Chemistry/ Biochemistry, Faculty of Medicine Lambung Mangkurat University, Banjarbaru, 100 101 South Kalimantan, Indonesia.

102 A total of 30 infants subjects were recruited for this study. Subjects were divided into 2 groups: group I were infants at risk of sepsis and served as a case group, while group II 103 were infants without risk of sepsis and served as a control group. Subjects in the sepsis risk 104 group were included on the basis of having at least 1 major criteria or 2 minor criteria for 105 sepsis according to The American Congress of Obstetricians and Gynecologist (ACOG) 106 guidelines (17-18). Major risk criteria were premature ruptured of membranes (PROM) for > 107 108 24 hours, maternal fever with intrapartum temperature > 38°C, chorioamnionitis, fetal heart rate persisting at > 160 times/min or bad smelling of amniotic fluid. Minor risk criteria were 109 110 **Det Mentage PROM** for > 12 hours, maternal fever with intrapartum

Formatted: Highlight

temperature > 37.5°C, low Apgar score (<5 at the 1st min-, <7 at the 5th min), very low birth weight baby (VLBWB) of <1500 gr, gestational age- < 37 weeks, multiple pregnancy, bad smelling of vaginal discharge, maternal urinary tract infection (UTI) or suspected untreated maternal UTI. Age and gender matched healthy newborns were chosen as controls. Newborns with birth asphyxia, low birth weight, preterm and congenital malformations were excluded from this study.

117

118 2. Samples collection

Sampling was carried out by accidental sampling method, with criteria specified in subjects section as mentioned earlier. The sampling took place from February-May 2017. In that time, 30 samples were obtained, with 15 samples of newborn at risk of sepsis and 15 normal samples Samples of blood were taken from umbilical cord (5 ml each) and collected using vacutainers containing EDTA. Each sample then washed with cold saline phosphate buffer with pH 7.4 for the spectoscopic analysis, and the estimation of SCN and AOPPs levels.

126

127

128 **3.** Spectrophotometryscopic analysis

Each blood sample was diluted with normal saline at concentration of 5 μL/mL. The spectra were scanned in the region between 200-700 nm using T80+ UV/VIS spectrometer at Medical Chemistry/Biochemsitry Laboratory, Faculty of Medicine, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia. Amide chain of proteins present in the blood absorbs strongly at 210 nm. Absorption of tyrosine and tryptophan is at around 280 nm. Also the absorptions at 417, 543 and 578 nm are due to d-f transition of CO-OxyCommented [InaBJ19]: Abbreviation for?

6

Commented [IH20R19]: SCN for thiocyanate and AOPPs for Advance Oxidation Protein Products. I thin already mentioned in introduction section. You can see in page 3 line 55 and 59.

Commented [InaBJ21]: Please be consistent: Spectrophotometry analysis Commented [IH22R21]: Ok. I change it to spectrophotometry Formatted: Highlight $\textbf{M201723} - \text{UV-V} is ible \ Spectrophotometric \ Tool \ in \ Neonatal \ Sepsis$

135	hemoglobin (13,15). According to Gunasekaran et al. (15) from these spectral differences,	<	Commented [IH23]: I agree with this deletion
136	three absorbance ratio could be measured. They were A278/A210 in the protein region and	$\overline{\ }$	Formatted: Highlight Formatted: Highlight
137	A ₅₄₃ /A ₄₁₇ , A ₅₇₈ /A ₄₁₇ in the oxy-hemoglobin region.		
138			
139	4. SCN and AOPPs level analysis		
140	SCN concentration was measured spectrophotometrically as described by Aune and Thomas.		
141	AOPPs measurement were made by spectrophotometric methods as describe by Witko-Sarsat		
142	et al., with slight modification (10).		
143			
144	5. Staistical Analysis		
145	The comparison of absorbance between healthy blood and risk of sepsis blood were		
146	examined by Mann Whitney U test with $p < 0.05$. Data analysis using SPSS for Windows		
147	version 16 <u>(SPSS Inc., Chicago, Illinois, USA)</u> .		Commented [InaBJ24]: Company name, city and country of the manufacturer?
148			Formatted: Highlight
149	Results and Discussion		
150	Spectrophotometry scopic method techinique has become a promising tool for a better	<	Commented [DAH25]: Spectrophotometry
151	understanding in phmarceutical, biological material, and pathomechanism of a disease. It was	$\overline{\ }$	Commented [IH26R25]: I already change it to spectrophotometry
152	first described by Gunasekaran et al. (13,15-16) study which is investigated the spectral		Formatted: Highlight
153	differencies of several diseases like diabetes, leukemia, and thyroid. In this present study we		
154	try to employed the spectral differencies between healthy blood and blood of newborn at risk		
155	of sepsis. The result is presented in Table 1.		
156	Table 1 gives the statistical results of the analysis of UV-Visible spectral data in		
157	protein and oxy-hemoglobin. The data clearly shows the discrimination of the newborn at risk		

of sepsis blood from that of the healthy one. The result data indicated that the absorbance

158

159 ratio_—of oxy-hemoglobin is lower in newborn at risk of sepsis. The decreasing of this ratio160 may be due to the changes in oxy-hemoglobin.

161 It is well known that sepsis will activate the natural immune system which are mostly roled by neutrophils. In this condition, neutrophil will inserted have inserted into infected 162 tissue to inducedinduce a process known as respiratory burst. This process useuses an oxygen 163 164 to form ROS which is useful to attack the bacterial pathogens (2). The result clearly indicated that there is a structural chages in oxy-hemoglobin This is thought to be due to oxygen 165 166 release from oxy hemoglobin used to produce ROS such as, radical superoxide (•O2), hydrogen peroxide (H_2O_2), and radical hydroxyl. Also, the release of oxygen from oxy 167 168 hemoglobin will lead to hypoxia. Hypoxia itself will increased the ROS level. The basic mechanism how the hypoxia increased the ROS level is mitochondria dysfunction which is 169 170 activate some of the enzymes that play a role in the formation of ROS-like NADPH oxidase 171 and superoxide dismutase (SOD) (19).

The result data from table 1 also shows that the absorbance ratio of protein is also lower in newborn at risk sepsis. This result indicated that the protein levels in blood of newborn at risk of sepsis was decreased. This may be due to protein damage due to oxidative stress conditions. To investigate how the protein damage during sepsis condition, in this present study we also measured the level of SCN and AOPPs. The results **shows** are shown in Table 2.

The result from Table 2 shows that the level of SCN is higher in the case group compare to cotrol group. It is in line with our previous reports which investigated the comparison of SCN levels in saliva of newborn at risk of sepsis with and without antibiotic therapy. In that study, the level of SCN seems more higher at newborn with risk of sepsis without antibiotic theraphy (10). The increasing of SCN level may be due to the activation of

 Commented [IH27]: I agree with this deletion

 Commented [IH28]: I agree with this changed

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

 Formatted: Highlight

MPO which is used H₂O₂ and SCN as a co-substrate to form hypothiocyanate acid (HOSCN)
whic is also useful to attack bacterial pathogens (20).
Both ROS and HOSCN that produced in sepsis condition are powerful oxidants which
promote a further raction result in host tissue damage (21). One of the targets that can be
damaged by the molecule is protein. It is in line with the result from the table 2. The result
from table 2 indicated that the level of AOPPs is increase. AOPPs in known as a novel
marker in several condition which is related to oxidative stress (10). AOPPs is known as a

cross-linking protein products which is formed by a modification of amino acid caused byoxidation by an ROS (22-23).

192

202

193 Conclusion

In conclusion, the present study demonstrated there were significant differences 194 between the average of absorbance ratio parameter for protein and oxy hemoglobin region 195 using UV-Vis spectrophotometricscopic methods in healthy subjects and newborn at risk of 196 sepsis. It can be concluded that there were changes in blood of newborn at risk of sepsis and 197 198 it may explain the pathomechanism of neonatal sepsis for our better understanding. This result study also suggests that UV-visible spectrophotometricscopic may be useful as a tool 199 to for early diagnosis of NS. Further research is needed to explore spectrophotometric 200 201 analysis as a diagnosis method of NS.

Commented [InaBJ29]: spectrophotometric Commented [IH30R29]: i already change to spectrophotometric Formatted: Highlight

Commented [InaBJ31]: spectrophotometric	
Commented [IH32R31]: i already change to spectrophotometric	
Formatted: Highlight	
Commented [IH33]: i agree with this deletion	
Commented [IH34]: i agree to change the word "to" with "for"	
Formatted: Highlight	
Formatted: Highlight	

203		References					
204	1.	Bokun LV, Huang J, Yuan H, Yan W, Hu G, Wang J. Tumor necrosis factor-alpha as					
205		diagnostic marker for neonatal sepsis: A meta-analysis. Scientific World J. 2014;					
206		2014: 1-14. DOI: 10.1155/2014/471463.					
207	2.	Junanto A., Firdaus RT, Triawanti, Suhartono E. Advance oxidation protein products					
208		(AOPPs) of newborn at risk of sepsis as novel parameter for early-onset neonatal					
209		sepsis. Int J Biosci Biochem Bioinforma. 2014; 4 (2): 90–3.					
210	3.	Simarmata YBC, Harahap U, Djipta GD. Identification of risk factors caused neonatal					
211		sepsis of premature neonatus in Adam Malik General Hospital Center. Int J					
212		PharmTech. 2016; 9 (11): 54–7.					
213	4.	Global Health Observatory Data: Infant Mortality [http://www.who.int/gho/child					
214		health/mortality/neonatal_infant/en/], accessed date 13th June 2017.					
215	5.	Global Health Observatory Data: Causes of Child Mortality. [http:// www.who.					
216		int/gho/ child_health/mortality/causes/en/], accessed date 13th June 2017.					
217	6.	Global Health Observatory Data: Neonatal Mortality.					
218		[http://www.who.int/gho/child_health/mortality/neonatal_text/en/], accessed date 13th					
219		June 2017.					
220	7.	Venkatesh M, Flores A, Luna RA. Molecular microbiological methods in the					
221		diagnosis of neonatal sepsis. Expert Rev Anti Infect Ther. 2010; 9: 1037-48.					
222	8.	Fink MP. Cytopathic hypoxia: Mitochondrial dysfunction as mechanism contributing					
223		to organ dysfunction in sepsis. Crit Care Clin. 2001; 1: 219-37.					
224	9.	Cancelier AC, Petronilho F, Reinke A, Constantino L, Machado R, Ritter C, Dal-					
225		Pizzol F. Inflammatory and oxidative parameters in cord blood as diagnostic of early-					
226		onset neonatal sepsis: A case-control study. Pediatr Crit Care Med. 2009; 10 (4): 467-					
		10					

M201723 - UV-Visible Spectrophotometric Tool in Neonatal Sepsis

227	71.
228	10. Yunanto A, Iskandar, Suhartono E. In-vitro effects of some antibiotic drugs on saliva
229	thiocyanate and oxidation protein products levels on newborn at risk of sepsis. IJPCR.
230	2016; 8 (1): 86-9.
231	11. Ibrahim MSM, Bajaj MM, Singh VR, Ruchika, Farhana SAS. Spectroscopic study of
232	blood samples using FTIR and UV-Visible spectrometers. Internat J Bioscience.
233	2014; 3: 13-6.
234	12. Schmid F. Biological Macromolecules: UV-visible Spectrophotometry. Encyclopedia
235	of Life Sciences. 2001; 1–4. DOI: 10.1038/npg.els.0003142.
236	13. Gunasekaran S, Natarajan RK, Renganayaki V, Rathikha R. FTIR and UV visible
237	spectrophotometric approach to discriminate leukemic sera. Asian J. Spectro. 2008;
238	20 (4): 2521–30.
239	14. Kanagathara N, Thirunavukkarasu M, Jeyanthi EC, Shenbagarajan P. FTIR and UV-
240	Visible spectral study on normal blood samples. Int. J Pharm Bio Sci. 2011; 1(2): 74-
241	81.
242	15. Gunasekaran S, Nataraian RK, Renganayaki V. UV Visible Spectrophotometric
243	Approach and Absorption Model for the Discrimination of Diseased Blood. Asian J.
244	Chem. 2008; 20 (1): 48–54.
245	16. Gunasekaran S, Uthra D. FTIR and UV-Visible spectral study on normal and jaundice
246	blood samples. Asian J.Chem. 2008; 20 (7): 5695-703.
247	17. Bryce J, Boshi-Pinto C, Shibuya K, Black RE. WHO estimates the causes of death in
248	children. Lancet. 2005; 365: 1147-52.
249	18. Aggarwal R, Sarkar N, Deorari AK, Paul VK. Sepsis in the newborn. Indian J Pediatr.
250	2008; 75 (3): 261-6.

251	19. Gao J, Ding XS, Zhang YM, Dai DZ, Liu M, Zhang C, Dai Y. Hypoxia/oxidative
252	stress alters the pharmacokinetics of CPU86017-RS mitochondrial dysfunction and
253	NADPH oxidase activation. Acta Pharm Sinica. 2013; 34: 1575-84.
254	20. Lestarisa T, Alexandra FD, Jelita H, Suhartono E. Myeloperoxidase as an indicator of
255	liver cells inflammation induced by mercury. IJPCR. 2016; 8 (11): 1516-21.
256	21. Lane AE, Tan JTM, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidase-
257	derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell
258	signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages.
259	Biochem J. 2010; 430: 161-9. DOI:10.1042/BJ20100082.
260	22. Suhartono E, Nijka JA, Anhar VY, Sari RA, Edyson, Marisa D. Anti-lipid
261	peroxidation activities of three selected fruits juices against cadmium induced liver
262	damage in vitro. J. Trop Life Science. 2015; 5 (2): 77-9.
263	23. Aflanie I, Sari NN, Suhartono E. Oxidative and chlorinative stress biomarkers in liver

cells of rats exposed to cyanide in-vitro. IJPCR. 2016; 8 (10): 1441-5.

M201723 - UV-Visible Spectrophotometric Tool in Neonatal Sepsis

266 Tables

Table 1. UV-Visible spectral analysis of absorbance ratio parameters of healthy and newborn at risk of sepsis
 268

1						
	Region	Intensity ratio parameter	Average ± SD	P value		Commented [InaBJ35]: Please add one column shows the p
-		A ₂₇₈ /A ₂₁₀				value of each parameter
	Protein	Normal Sepsis	13.95 ± 5.714 $1.963 \pm 0.776*$	1000		Commented [IH36R35]: I add one column and the p value for each parameter
-		A543/A417				Formatted: Highlight
		Normal Sepsis	1.725 ± 0.758 $0.852 \pm 0.252^*$	0.000	\backslash	Formatted Table
	Oxy hemoglobin	A578/A417	01002 - 01202			Formatted: Highlight
		Normal	1.543 ± 0.876			Formatted: Highlight
69	* Values are significantly	Sepsis different from $(P < 0.05)$	$1.258 \pm 0.126*$	to Mann-Whitney U tests.		Formatted: Highlight
270	values are significantly	(1 < 0.03)	, according	to Mann- whitey o tests.		Formatted: Highlight

271 272

 Table 2. SCN and AOPPs level comparison between case and control group

	Parameters	Control group	Case group		P value	*
	SCN (mM)	0.232 ± 0.053	0.667 ± 0.053		0.001	
	AOPPs (µM)	0.724 ± 0.968	3.867 ± 1.340		0.000	
273	* Values are significantly	different from $(P < 0.05)$	he control group, accor	rding to Ma	nn-Whitney U te	sts.

274

-	Formatted: Highlight
	Commented [InaBJ37]: Please add column shows the p value. Which one is significantly different? Please add the asterix.
	Commented [IH38R37]: I add one column, the p valeu, and the asterix marks.
	Formatted Table
	Formatted: Pattern: Clear (Custom Color(RGB(102;255;51))), Highlight
$\langle \rangle$	Formatted: Highlight
	Formatted: Highlight

UV-Visible Spectrophotometric as a Prospective Tool in Neonatal Sepsis

Eko Suhartono^{1,*}, Ari Yunanto², Edi Hartoyo², Nia Kania³, Adelia Anggraini Utama², Ratih Kumala Sari², Niarsari Anugrahing Putri², Iskandar Thalib^{2,4} ¹Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Ahmad Yani Street Km. 36, Banjarbaru 70712, South Kalimantan, Indonesia ²Department of Child Health, Faculty of Medicine, Lambung Mangkurat University, Veteran Street No. 128, Banjarmasin 70232, South Kalimantan, Indonesia ³Research Center for Toxicology, Cancer, and Degenerative Disease, Department of Pathology, Ulin General Hospital/Faculty of Medicine, Lambung Mangkurat University, Veteran Street No. 128, Banjarmasin 70232, South Kalimantan, Indonesia ⁴Research and Development Unit, Mutiara Bunda Mother and Child Hospital, Taisir Street No. 2, Martapura 70614, South Kalimantan, Indonesia

*Corresponding Author. Email: esuhartono@unlam.ac.id

Abstract

Background: This present study was aimed to employ the UV-Vis spectroscopic techniques to detect the changes in blood of Nenonatal Sepsis (NS) subject for a deeper understanding in the pathomechanism of NS.

Methods: The cross-sectional prospective study was conducted from February to May 2017 in the Neonatology Division, Department of Pediatric, Ulin General Hospital/Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia. Blood specimens were taken from newborns, of which 15 each of newborns at risk of sepsis and without risk of sepsis. Data was analyzed by using Mann-Whitney U test. **Results:** The result of this present study suggested that there is a significant difference of the averange of absorbance ratio parameter using UV-Vis spectroscopic methods on the case group compare to the control group. Also, there is a significant difference between AOPPs and SCN level in newborn at risk of sepsis.

Conclusion: In conclusion, the present study demonstrated there were significant differences between the average of absorbance ratio parameter for protein and oxy hemoglobin region using UV-Vis spectroscopic methods in healthy subjects and newborn at risk of sepsis.

Keywords: Neonatal Sepsis, Oxidative Stress, Spectroscopy.

Introduction

Neonatal Sepsis (NS) is a clinincal syndrome that is charazterized by systemic signs and symptoms of infection in neonates which is an important cause of mortality in newborns and life threatening disorder in infants (1-2). Incidence rate of neonatal sepsis in developed countries ranged between 3-5 per 1,000 live births. WHO (2007) reported the Case Fatality Rate (CFR) in the case of neonatal sepsis in the world is still high by 40% (3). In 2015, 4.5 million children died in first year of life (4). Forty five percents occurred in first month of life (newborn babies). The causes of death in infants were various. Neonatal sepsis contributed for seven percent of the total cause of infant mortality (5,6). The current gold standard for diagnosis of sepsis is blood culture, suffers from low sensitivity and a reporting delay of approximately 48–72 hours (7).

The pathomechanism of NS is remain unclear. Some previous studies suggested that the pathomechanism of NS was through oxidative stress mechanism (2,8-9). Infectious agents in NS caused the activation neutrophils which promote a further reaction to activate NADPH oxidase. These activation will cause the formation reactive oxygen species (ROS). Also, the activation of neutrophil induced the releasing of Myeloperoxidase (MPO). MPO use H_2O_2 to catalyses the oxidation of halide (Cl-, Br-) and pseudohalide (thiocyanate ion, SCN) to form HOSCN. The ROS, halide and pseudohalide oxidation is known to play an important role in killing invading parasites and pathogens. Furthermore, the ROS, halide and pseudohalide oxidation products could oxidizied protein and resulted in the formation of oxidized protein known as Advance Oxidation Protein Products (AOPPs) (2,10).

UV-Visible spectroscopic methods was one known method that have been used extensively for several qualitative analysis of medical biological samples such as, blood plasma, sera, or tissues (11). Spectroscopy is a technique that measures the interaction of molecules with electromagnetic radiation. Electromagnetic radiation in this method is obtained from light that will trigger the excitation of electrons in a molecule. Furthermore, when the light was absorbed, a spectrum is obtained as a function of its frequency of wavelength. It depend on chemical nature on the molecular environment of its chromophores. Absorption spectroscopy is therefore an excellent technique for following ligand-binding reactions, enzyme catalysis and conformational transitions in proteins and nucleic acids (12).

Generally, the blood experiences significant changes in compound and biochemical properties in all diseases. The use of an examination method such as UV-Visible (UV-Vis) spectroscopy to determine changes in blood is an inevitability. This is due to reduces in time, resources, and cost (11). The advantage in the ever improving sensitivity of contemporary spectrometers with sophisticated computational techniques proved that UV-Visible (UV-Vis) spectroscopy could be exploited to explore the various biochemical alterations on the molecular and structural differences of the biofluids of the human body (13).

In recent years, spectroscopy was used for the diagnosis for several diseases. Kanagathara et al and Ibrahim et al has been employed UV-Vis spectroscopic methods to study the spectral differences in the serum of normal blood samples (11,14). Gunasekaran et al has been demonstrated using UV-Vis spectroscopic method to differentiate the healthy sera from the jaundice, leukemia, anemia, cirrhosis liver, thalassemia and diabetes (13,15-16). Still, there is no study in the literature examining the characteristics of blood in NS using UV-Vis spectroscopic methods. Therefore, the present experimental study aimed to employ the UV-Vis spectroscopic techniques to detect the changes in blood of NS subject and also for a deeper understanding the pathomechanism of NS.

Methods

1. Subjects

The study was conducted on infants with and without risk of sepsis after informed consent was obtained from them. It was approved by the Ethics Commission of the Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia. The protocol of this study was approved by the Ethics Committee of Faculty of Medicine, Lambung Mangkurat University (No. 331/KEPK-FK UNLAM/EC/IV/2017) according to the Declaration of Helsinki. The participants gave us their written informed consent before the study. The study was conducted from February to May 2017 in the Neonatology Division, Department of Pediatric, Ulin General Hospital/Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia. All laboratory tests were conducted at Department of Medical Chemistry/ Biochemistry, Faculty of Medicine Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia.

A total of 30 infants subjects were recruited for this study. Subjects were divided into 2 groups: group I were infants at risk of sepsis and served as a case group, while group II were infants without risk of sepsis and served as a control group. Subjects in the sepsis risk group were included on the basis of having at least 1 major criteria or 2 minor criteria for sepsis according to The American Congress of Obstetricians and Gynecologist (ACOG) guidelines (17-18).

2. Samples collection

Samples of blood were taken from umbilical cord (5 ml each) and collected using vacutainers containing EDTA. The samples were centrifuged for 15 min at 2000 rpm and stored at -20C until further analysis.

3. Spectroscopic analysis

Each blood sample was diluted with normal saline at concentration of 5 μ L/mL. The spectra were scanned in the region between 200-700 nm. Amide chain of proteins present in the blood absorbs strongly at 210 nm. Absorption of tyrosine and tryptophan is at around 280 nm. Also the absorptions at 417, 543 and 578 nm are due to d-f transition of CO-Oxy hemoglobin (13,15).

4. Statistical Analysis

The comparison of absorbance between healthy blood and risk of sepsis blood were examined by Mann Whitney U test with p < 0.05. Data analysis using SPSS for Windows version 16.

Results and Discussion

Spectroscopic method techinique has become a promising tool for a better understanding in phmarceutical, biological material, and pathomechanism of a disease. It was first described by Gunasekaran et al. (13,15-16) study which is investigated the spectral differencies of several diseases like diabetes, leukemia, and thyroid. In this present study we try to employed the spectral differencies between healthy serum and serum of newborn at risk of sepsis. The result is presented in table 1.

Table 1 gives the statistical results of the analysis of UV-Visible spectral data in protein and oxy haemoglobin. The data clearly shows the discrimination of the newborn at risk of sepsis blood from that of the healthy one. The result data indicated that the absorbance ratio of oxy-haemoglobin is lower in newborn at risk of sepsis. The decreasing of this ratio may be due to the changes in oxy hemoglobin.

It is well known that sepsis will activate the natural immune system which are mostly roled by neutrophils. In this condition, neutrophil will inserted into infected tissue to induced a process known as respiratory burst. This process use an oxygen to form ROS which is useful to attack the bacterial pathogens (2). The result clearly indicated that there is a structural chages in oxy haemoglobin This is thought to be due to oxygen release from oxy hemoglobin used to produce ROS such as, radical superoxide (\cdot O2), hydrogen peroxide (H_2O_2), and radical hydroxyl. Also, the release of oxygen from oxy hemoglobin will lead to hypoxia. Hypoxia it self will increased the ROS level. The basic mechanism how the hypoxia increased the ROS level is mitochondria dysfunction which is activate some enzymes some of the enzymes that play a role in the formation of ROS-like NADPH oxidase and superoxide dismutase (SOD) (19).

The result data from table 1 also shows that the absorbance ratio of protein is also lower in newborn at risk sepsis. This result indicated that the protein levels in blood of newborn at risk of sepsis was decreased. This may be due to protein damage due to oxidative stress conditions. To investigate how the protein damage during sepsis condition, in this present study we also measured the level of SCN and AOPPs. The results shows in table 2.

The result from table 2 shows that the level of SCN is higher in the case group compare to cotrol group. It is in line with our previous reports which investigated the comparison of SCN levels in saliva of newborn at risk of sepsis with and without antibiotic therapy. In that study, the level of SCN seems more higher at newborn with risk of sepsis without antibiotic theraphy (10). The increasing of SCN level may be due to the activation of MPO which is used H₂O₂ and SCN as a co-substrate to form hypothiocyanate acid (HOSCN) whic is also useful to attack bacterial pathogens (20).

Both ROS and HOSCN that produced in sepsis condition are powerful oxidants which promote a further raction result in host tissue damage (21). One of the targets that can be damaged by the molecule is protein. It is in line with the result from the table 2. The result from table 2 indicated that the level of AOPPs is increase. AOPPs in known as a novel marker in several condition which is related to oxidative stress (10). AOPPs is known as a cross-linking protein products which is formed by a modification of amino acid caused by oxidation by an ROS (22-23).

Conclusion

In conclusion, the present study demonstrated there were significant differences between the average of absorbance ratio parameter for protein and oxy hemoglobin region using UV-Vis spectroscopic methods in healthy subjects and newborn at risk of sepsis. It can be concluded that there were changes in blood of newborn at risk of sepsis and it may explain the pathomechanism of neonatal sepsis for our better understanding. This result study also suggests that UV-visible spectroscopic may be useful as a tool to early diagnosis of NS. Further research is needed to explore the spectroscopic analysis as a tool for diagnosis of NS.

References

- Bokun LV, Huang J, Yuan H, Yan W, Hu G, Wang J. Tumor necrosis factor-alpha as a diagnostic marker for neonatal sepsis: A meta-analysis. Scientific World J. 2014; 2014: 1-14. DOI: 10.1155/2014/471463.
- Yunanto A., Firdaus RT, Triawanti, Suhartono E. Advance oxidation protein products (AOPPs) of newborn at risk of sepsis as novel parameter for early-onset neonatal sepsis. Int J Biosci Biochem Bioinforma. 2014; 4 (2): 90–3.
- Simarmata YBC, Harahap U, Djipta GD. Identification of risk factors caused neonatal sepsis of premature neonatus in Adam Malik General Hospital Center. Int J PharmTech. 2016; 9 (11): 54–7.
- 4. Global Health Observatory Data: Infant Mortality [http://www.who.int/gho/child health/mortality/neonatal_infant/en/], accessed date 13th June 2017.
- 5. Global Health Observatory Data: Causes of Child Mortality. [http:// www.who. int/gho/ child health/mortality/causes/en/], accessed date 13th June 2017.
- Global Health Observatory Data: Neonatal Mortality. [http://www.who.int/gho/child_health/mortality/neonatal_text/en/], accessed date 13th June 2017.
- 7. Venkatesh M, Flores A, Luna RA. Molecular microbiological methods in the diagnosis of neonatal sepsis. Expert Rev Anti Infect Ther. 2010; 9: 1037-48.
- 8. Fink MP. Cytopathic hypoxia: Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001; 1: 219-37.
- Cancelier AC, Petronilho F, Reinke A, Constantino L, Machado R, Ritter C, Dal-Pizzol F. Inflammatory and oxidative parameters in cord blood as diagnostic of earlyonset neonatal sepsis: A case-control study. Pediatr Crit Care Med. 2009; 10 (4): 467-

71.

- Yunanto A, Iskandar, Suhartono E. In-vitro effects of some antibiotic drugs on saliva thiocyanate and oxidation protein products levels on newborn at risk of sepsis. IJPCR. 2016; 8 (1): 86-9.
- Ibrahim MSM, Bajaj MM, Singh VR, Ruchika, Farhana SAS. Spectroscopic study of blood samples using FTIR and UV-Visible spectrometers. Internat J Bioscience. 2014; 3: 13-6.
- Schmid F. Biological Macromolecules: UV-visible Spectrophotometry. Encyclopedia of Life Sciences. 2001; 1–4. DOI: 10.1038/npg.els.0003142.
- Gunasekaran S, Natarajan RK, Renganayaki V, Rathikha R. FTIR and UV visible spectrophotometric approach to discriminate leukemic sera. Asian J. Spectro. 2008; 20 (4): 2521–30.
- 14. Kanagathara N, Thirunavukkarasu M, Jeyanthi EC, Shenbagarajan P. FTIR and UV-Visible spectral study on normal blood samples. Int. J Pharm Bio Sci. 2011; 1(2): 74-81.
- 15. Gunasekaran S, Nataraian RK, Renganayaki V. UV Visible Spectrophotometric Approach and Absorption Model for the Discrimination of Diseased Blood. Asian J. Chem. 2008; 20 (1): 48–54.
- Gunasekaran S, Uthra D. FTIR and UV-Visible spectral study on normal and jaundice blood samples. Asian J.Chem. 2008; 20 (7): 5695-703.
- 17. Bryce J, Boshi-Pinto C, Shibuya K, Black RE. WHO estimates the causes of death in children. Lancet. 2005; 365: 1147-52.
- Aggarwal R, Sarkar N, Deorari AK, Paul VK. Sepsis in the newborn. Indian J Pediatr.
 2008; 75 (3): 261-6.

- 19. Gao J, Ding XS, Zhang YM, Dai DZ, Liu M, Zhang C, Dai Y. Hypoxia/oxidative stress alters the pharmacokinetics of CPU86017-RS mitochondrial dysfunction and NADPH oxidase activation. Acta Pharm Sinica. 2013; 34: 1575-84.
- 20. Lestarisa T, Alexandra FD, Jelita H, Suhartono E. Myeloperoxidase as an indicator of liver cells inflammation induced by mercury. IJPCR. 2016; 8 (11): 1516-21.
- 21. Lane AE, Tan JTM, Hawkins CL, Heather AK, Davies MJ. The myeloperoxidasederived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J. 2010; 430: 161-9. DOI:10.1042/BJ20100082.
- 22. Suhartono E, Nijka JA, Anhar VY, Sari RA, Edyson, Marisa D. Anti-lipid peroxidation activities of three selected fruits juices against cadmium induced liver damage in vitro. J. Trop Life Science. 2015; 5 (2): 77-9.
- 23. Aflanie I, Sari NN, Suhartono E. Oxidative and chlorinative stress biomarkers in liver cells of rats exposed to cyanide in-vitro. IJPCR. 2016; 8 (10): 1441-5.

Tables

Table 1. UV-Visible spectral analysis of absorbance ratio parameters of healthy and newborn at risk of sepsis

Intensity ratio parameter	Average ± SD	
A ₂₇₈ /A ₂₁₀		
Normal	13.95 ± 5.714	
Sepsis	$1.963 \pm 0.776 *$	
A543/A417		
Normal	1.725 ± 0.758	
Sepsis	$0.852 \pm 0.252*$	
A578/A417		
Normal	1.543 ± 0.876	
Sepsis	$1.258 \pm 0.126*$	
	A278/A210 Normal Sepsis A543/A417 Normal Sepsis A578/A417 Normal	

* Values are significantly different from (P < 0.05), according to Mann-Whitney U tests.

Table 2. SCN and AOPPs level comparison between case and control group

Parameters	Control group	Case group
SCN (mM)	0.232 ± 0.053	0.667 ± 0.053
AOPPs (µM)	0.724 ± 0.968	3.867 ± 1.340

* Values are significantly different from (P < 0.05), according to Mann-Whitney U tests.

The Indonesian Biomedical Journal

Prodia Tower 9th Floor, Jl. Kramat Raya No. 150, Jakarta 10430 - Indonesia Tel.: +62-21-3144182 ext.872, Fax.: +62-21-3144181 Email: Secretariat@InaBJ.org, Website: www.InaBJ.org

Document Number : 003/F16/IBJ/I/2018 Subject : Proof reading

Jakarta, January 7, 2018

Dear Dr. Eko Suhartono,

Thank you for your contribution to The Indonesian Biomedical Journal. In this opportunity, we would to inform you that your manuscript is entering publishing process. We need your kind assistance to check an attached proof of your manuscript and please respond before January 12, 2018. Please do any necessary corrections.

When you completed all your corrections/comments, please scan your commented copy and send it along with your filled "Proof Reading Approval by Author" to Secretariat@InaBJ.org.

Thank you for your kind attention and cooperation. Looking forward for your future manuscript submission.

Sincerely,

Nurrani Mustika Dewi Secretarial Officer

The Indonesian Biomedical Journal

Prodia Tower 9th Floor, Jl. Kramat Raya No. 150, Jakarta 10430 - Indonesia Tel.: +62-21-3144182 ext.872, Fax.: +62-21-3144181 Email: Secretariat@InaBJ.org, Website: www.InaBJ.org

Proof Reading Approval by Corresponding Author

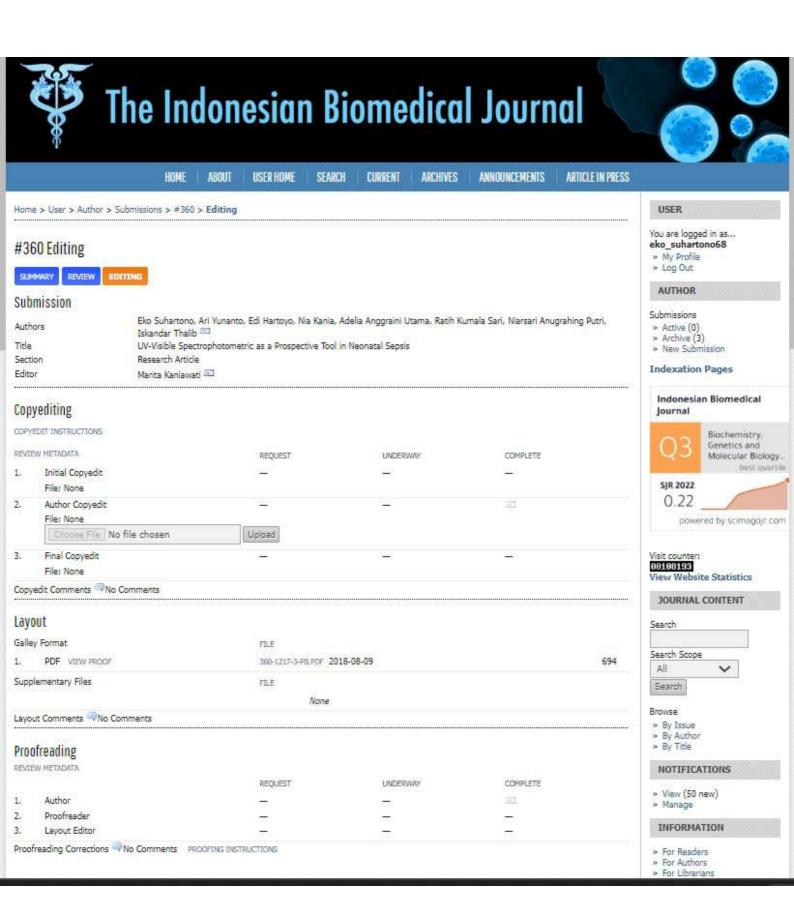
Document Number : 003/F16/IBJ/I/2018

Banjarbaru, Januari 08, 2018

Dear Managing Editor of The Indonesian Biomedical Journal,

Hereby I confirm that I have already checked the "proof reading" of my manuscript entitled:

UV-Visible Spectrophotometric as a Prospective Tool in Neonatal Sepsis


I am agreed that the manuscript : (please tick one)

- $[\sqrt{}]$ can be published without any correction
- [] can be published with some minor corrections (copy of commented "proof reading" is attached with this letter)

I hereby authorize The Indonesian Biomedical Journal to publish my manuscript according to my comments on the attached "proof reading".

Eko Suhartono

I hereby certify that I am authorized to sign this document either in my own right or as a part of my team.

