
2021-Heavy_Metal.pdf

Submission date: 05-Jun-2023 08:21PM (UTC+0700)

Submission ID: 2109499355

File name: 2021-Heavy_Metal.pdf (690.35K)

Word count: 10078 Character count: 50997

Heavy metal concentrations in water, sediment and giant mudskipper (*Periophthalmodon schlosseri*) in the coastal wetlands of Kuala Lupak estuary of the Barito River, Indonesia

^{1,2}Heri B. Santoso, ¹Hidayaturrahmah, ³Eko Suhartono, ⁴Rizmi Yunita, ⁵Danang Biyatmoko, ⁶Dewi Anggraini

Department of Biology, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia; Doctoral Program of Agricultural Science, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia; Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia; Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia; Department of Animal Science, Faculty of Agriculture, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia; Department of Statistics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia. Corresponding author: H. B. Santoso, heribudisantoso@ulm.ac.id

Abstract. Pollution seriously threatens wetland habitats, one of the main pollutants coming from heavy metals. The iron (Fe), zinc (Zn), copper (Cu), mercury (Hg), cadmium (Cd) and lead (Pb) were assessed 581 he water, sediment and in the giant mudskipper fish, *Periophthalmodon schlosseri*. The assessment of heavy metals was carried out by using an atomic absorptio 2 reader (AA-6200 AAS Flame Emission Spectrophotometer Shimadzu). The aver 4 e concentrations of these metals in water decreased as 220 pws: Fe>Pb>Zn>Hg>Cd>Cu, while metals in the sediment samples decrease 22 as follows: Fe>Zn>Cu>Pb>Cd>Hg. Heavy metal 22 centrations in fish tissue and skin mucus were higher than the concentrations found in water 2 dies. The highest metal concentrations were found as follows: Fe in the kidney, Zn in the skin mucus, Cu in the kidney, Hg in the skin mucus, Cd in the liver and Pb in the skin mucus. In all fish tissues and skin mucus, Fe concentration was the highest. The bio-water accumulation factors of *P. schlosseri* tissue and skin m 25 were substantially higher than the bio-sediment accumulation factors, suggesting that this fish can be 2 tilized as a bioindicator for certain heavy metals in water. Because the coefficients of variation (CV) of heavy metal accumula3 in in fish tissues vary, these combined three fish tissue types (liver, kidney and skin mucus) have the potential to be used as an 57 rument to evaluate heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg, Pb and Cd. There was a correlation between the heavy metal pollutants such as Fe, Zn, Cu, Hg,

Introduction. Heavy metal pollution in estuarine/coastal swamp ecosyste2s is still a major issue that threatens biota, water quality and human health globally (Sia Su et al 2013). The negative impact of heavy metal pollutions poses a serious threat to the health of organisms, biological sustainability and function of estuary ecosystems. Heavy metal pollution has a long-term influence, promoting the habitat and biodiversity loss or degradation, and changes in natural resources (Sarah et al 2019; Tabrez et al 2021). These pollutants can disrupt the fish organisms at the molecular, cellular and physiological levels, resulting in negative effects on the pollution and community levels. Heavy metal pollutions are mostly caused by off hropogenic activities such as industrialization, agriculture and urban development. Heavy metals such as Cu, Zn, Fe, Pb, Cd, Hg and Ag often contaminate estuaries (Marques et al 2019).

The Barito River Estuary is a coastal swamp wetland ecosystem that is highly occupied by coal transportation, loading and unloading activities. The riverside land is used for a variety of anthropogenic activities, including the conversion of mangrove land to ponds the development of industrial areas in sectors such as wood/plywood processing, rubber processing, and the oil palm plantations, with waste disposal potentially polluting the ecosystem (Sofarini et al 2012; Sopiana et al 2018). As a result, it is critical to use a biomonitoring programs to evaluate the health of aquatic ecosystems due to pollution. Biomonitoring programs based on bioindicator instruments need to be developed for early pollution detection and to avoid the negative impacts of heavy metal pollutants on the estuary ecosystem.

There is little information on the biomonitoring program for heavy metal pollution in the Barito River Estuary. Dwiyitno & Ninoek (2008), Sofarini et al (2012) and Fahrrunnisa (2017) carried out monito 75 g with the water physicochemical method. According to Dwiyitno & Ninoek (2008), heavy metals such as Hg, Pb, Cd and Cu have been found in the water, sediment and fish living in the mouth of the Barito River, but have not exceeded the permissible threshold (PP. No. 82 of 2001 concerning river water quality standards), hence the water and fish are safe for consumption. Except for the chemical oxygen demand (COD) and ammonia levels at several stations, the overall quality of the waters of the Barito River Estuary is still pretty acceptable. Sofarini et al (2012) discovered in 2009-2010 that the water quality of the Barito River Estuary met the quality standard, even though the water body, sediment and shrimp have been lightly polluted by heavy metals Cu, As, Cr, Cd and Pb. Meanwhile, the sediment and the shrimp were moderately polluted by Hg.

A study of Fahrrunnisa (2017) revealed that giant mudskipper fish concentration of 0.64-0.68 mg kg $^{-1}$ in the coastal swamp area of Kuala Lupak had a Pb concentration of 0.64-0.68 mg kg $^{-1}$ in the 26 gills, skin and flesh, which was higher than the maximum heavy metals limit in food, of 0.03 mg kg $^{-1}$. The Pb concentration of 0.26-0.31 mg L $^{-1}$ in water bodies also exceeds the quality standard of 0.03 mg L $^{-1}$, while in sediments it is of 14.61-29.45 mg kg $^{-1}$, still below the quality standard (<36 mg kg $^{-1}$). The water quality in Kuala Lupak's coastal swamp area shows that it has been polluted by Pb, posing a threat to *P. schlosseri*.

The biomonitoring program employing *P. schlosseri* as bioindicators, which are commonly found in the region, is a solution for monitoring and evaluating the health of the Barito River Estuary. The sensitive and raphs response of fish in assessing the quality of the quality of the graph that the graph tha

P. schlosseri has the potential as a bioindicator in biomonitoring programs in the Barito River Estuary because they are naturally abundant and native to the estuary (Hidayaturrahmah et al 2019). This fish species' characteristics support this point of view: has adaptability and tolerance towards various conditions, it can accumulate varying concentrations of pollutants without suffering fatal consequences, it has benthic living habits, it has a high trophic level in the aquatic food chain, it has a 32 ect exposure to various pollutants, and it has the capability of accumulating heavy metals in their tissues (Zhou et al 2008; Ansari et 9 2014; Bertrand et al 2018). P. schlosseri are 39 tinel organisms because they can accumulate heavy metals in their tissues, have a wide geographic distribution and a high sensitivity to environmental pollutants, and they are the dominant sp70es in their habitats. Therefore, the species is suitable for identifying the effects of heavy metal pollution in water bodies and sediment and has a potential to be used for the evaluation of the ecological effects of pollutants on estuary ecosystems (Shirani et al 2012a,b). These fish are at a higher risk of exposure to heavy metals because they live in the mud of coastal intertidal zones, river mouths and mangrove forest floors in tropical and subtropical areas (Ghotbeddin & Roomiani 2020).

Estuary ecosystems are considered as the most degraded habitat types in the world because they are constantly subjected to heavy metal pollution from anthropogenic activities (Ferreira et al 2019; Marques et al 2019), as well as naturally occurring

processes such as sedimessation and floods (Barbee et al 2014; Zhang et al 2019). This work aimed at studying the heavy metal content in water, sediment and *P. schlosseri* tissues in the coastal swamp waters, as well as at discovering their potential as heavy metal pollution bioindicators for the biomonitoring programs of the water health in the Barito River Estuary ecosystem. This study is critical because biomonitoring studies on heavy metal pollution in the Barito River Estuary area, South Kalimantan, Indonesia are still limited, although the increasing industrialization and urbanization may have harmed aquatic ecosystems.

Material and Method

Description of the study sites. The Barito River is the largest and longest river in South Kalimantan. The Barito River originates Schwaner Mountains, stretching approximately 1,000 km from the Central Kalimantan region, in the 40 thern part of the island of Borneo, to the river's estuary in the Java Sea. The river has an average width of 650 to 800 m and a depth of 8 m. The river's width in the funnel-shaped estuary reaches 1,000 m, making the Barito River the widest river in Indonesia. The longest section of the Barito River, starting from the upper reaches of the river, is in Central Kalimantan, while the remainder, up to the river mouth, is in South Kalimantan. This river joins the estuary of Negara River before reaching the mouth of the Barito River in the Barito Kuala region. This study was conducted in the estuary waters (station 1) and the coastal waters of Kuala Lupak (station 2), both of which are located along the west coast of the Barito River estuary (figure 1). The description of the research locations at each station is presented in Table 1.

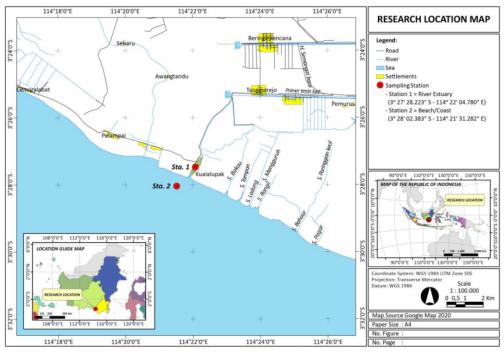


Figure 1. Map of research locations and stations.

Description of stations 1 and 2

No	Station	Description
1	Estuary/River estuary	Kuala Lupak is a Wildlife Reserve Area of the mangrove (swamp forest) ecosystem type. Around the mouth of the Kuala Lupak River, there are residential areas. The Kuala Lupak River flows into the Java Sea. Samples were collected in the estuary waters at the coordinates of 3°27′28.223″S 114°22′04.780″E.
2	Coastal Waters	Kuala Lupak's coastal waters are about 837n west of the mouth of the Barito River, located on the coast of the Java Sea with a coastline of about 30 km. Mangrove swamp forests may be found around Kuala Lupak's coastline waters. Samples were collected in coastal waters near the river's mouth at the coordinate point of 3°28'02.383"S 114°21'31.282"E.

In the period of 2-3 February, 2021, water, sediment and *P. schlosseri* were sampled using the "purposive sampling" approach, which entails obtaining samples based on various researchers' concerns. The researcher's consideration is based on the source of activities suspected of generating pollutant loads. Collecting samples in estuaries and coastal waters is justified by the residential areas in the region: the water flow of the Barito River is suspected to be polluted by anthropogenic activities. Natural causes, such as landslides, sedimentation, flooding and other natural phenomena are also considered to contribute to the occurrence of pollution. Furthermore, sampling assumes that estuaries and coastal regions are the most sensitive to biodegradation because of anthropogenic activities in the river's upstream and intermediate watersheds, which will have an impact on the estuary area.

Sampling. Water samples were collected from the surface layer at each station using a Ruttner Water Sampler and preserved with 5 mL of 70% nitric acid, before being frozen in the freezer for heavy metal analysis. The heavy metals that 16 re analyzed in water, sediment and fish organs were Pb, Cd, Hg, Fe, Cu and Zn. Sediment samples were collected from each station using the Ekman-Grab Sampler and stored in plastic bags to be dried and analyzed for heavy metal concentration. From each site, 10 *P. schlosseri* of similar size (varying from 17 to 20 cm and weighing 150 to 160 g) were collected. Experienced fishermen captured the fish by hand, by inserting their hands into the fish burrows. Fish from each station were cleaned with water, in order to remove contaminants.

The skin mucus preparation of *P. schlosseri* followed the technique of Fernández-Alacid et al (2018), in which clean fish were placed on a tray, held and the skin mucus was carefully collected with a sterile glass slide by rubbing from the area behind the gills down to the caudal. Two or three times, a sterile slide was gently slid down on both sides of the animal and the skin mucus was carefully pushed and collected in a sterile tube (2 mL). It is not recommended to collect mucus by continually contacting the body's surface, which would provide the greatest volume of mucus, because epidermal lesions may occur and blood or other cells may contaminate the samples. To avoid mucus dilution by the water, this procedure must be followed precisely, without re-wetting the animal and without any contact with the operculum, ventral anal, and caudal fins. The mucus was promptly frozen in liquid nitrogen and kept at -80°C for further analysis.

According to animal welfare standards, the typical treatment for fish before surgery is to place the fish in a container filled with cold/ice water, then decapitate or puncture pond/brain stem so that the fish's body does not experience pain during incision. The fish were dissected on a polyethylene work surface with stainless truments, taking care not to contaminate the samples. Each fish's liver and kidney tissues were removed and frozen until metal analyses could be performed. After being dissected to retrieve the skin mucus, liver and kidney organs, the fish are trimmed while undesirable fish leftover is burned in an incinerator.

All procedures were carried out in line with the ethical clearance of the Health Research Ethics Committee No. 549/KPEK-FK ULM/EC/III/2021 Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, Indonesia, which was formed to control and supervise the animal experiments.

Determination of heavy metals. The samples were thawed in the laboratory and dried for 48 hours in a 60°C oven. The dry and wet mass of each sample was recorded to measure the moisture content. In a 100 mL Erlenmeyer flask, 20 mL of concentrated nitric acid (55%) and 10 mL of perchlolic acid (70%) were added to roughly 1 g of tissue (dry mass). Digestion was carried out on a hotplate (200-250°C) until the solutions were clear. The solutions were then filtered through 0.45 μm acid-resistant filter paper and diluted to 50 mL each with doubly distilled water. The samples were kept in clean glass bottles until the metal concentration could be analyzed with an atomic absorption reader (AA-6200 AAS Flame Emission Spectrophotometer Shimadzu) (Kotze et al 1999).

Water samples were placed on a hot plate and mixed well with 10 mL of concentrated nitric acid (HNO₃), before being slowly boiled and evaporated till the lowest volume of around 200–100 mL. Before precipitation, another 10 mL of HNO₃ was ad 20, followed by continuous heating until the volume was decreased to 80–100 mL. The samples were then transferred into a 100 mL volumetric flask with 10 mL distilled water and diluted to the mark and filters; the metals were then analyzed (Shaaban et al 2017).

Sediment samples were dried to a constant weight at 80° C (Waykar & 49 are 2016) then crushed in Agate mortar. Subsamples of 0.5 g were weighed and 2 mL of concentrated hydrofluoric acid, 2 mL of concentrated HNO₃ and 1 mL of H_2O_2 were mixed in. A 51 lestone microwave digester was used for digestion. After cooling, the solutions were transferred to 25 mL calibrated flasks and diluted to the mark with deionized water. Following that the latter step, metal concentrations were filtered and analyzed (Shaaban et al 2027).

Pb, Cd, H21Fe, Zn and Cu in surface water, sediment, fish tissue and skin mucus were analyzed using an atomic absorption reader (AA-6200 AAS Flame Emission Spectrophotometer Shimadzu).

Analysis methods. Bioaccumulation factor (BF) was calculated to measure the degree of metal attumulation in organism tissues as follows: Bio-water accumulation factor (BWAF) = metals' concentration in fish tissues (mg/kg dry weight)/metals' concentration in water (mg L⁻¹). Bio-sediment accumulation factor (BSAF) = metals' concentration in fish tissues (mg kg⁻¹ dry weight)/ristals' concentration in sediment (mg kg⁻¹ dry weight) (Usero et al 2005; Gawad 2018). The degree of variability of metal concentration in fish tissues is calculated by the Coefficient of variation: CV (%) = Standard deviation x 100/Mean (Yap et al 2003). Descriptive statistics were used to determine the center and 13 read of data. Meanwhile, Pearson correlation was utilized to calculate the correlation between the metal concentrations in water, sediment and in the liver, kidney and skin mucus of giant mudskipper fish.

Results and Discussion

The concentration of heavy metals in water and sediment. Water and sediment samples from the estuary waters of Barito River (£63 tion 1) and coastal waters of Kuala Lupak (station 2) were analyzed for heavy metal concentrations of Fe, Zn, Cu, Hg, Cd and Pb. The average cotentrations of heavy metal found in water bodies across all research sites decreased as foll 80 s Fe>Pb>Zn>Hg>Cd>Cu. Fe has the highest average concentration, of 7.949 mg L⁻¹ (Table 2). The average heavy metal concentrations in the sediment decreased as follows: Fe>Zn>Cu>Pb>Cd>Hg.

Like water bodies, Fe concentration in sediment also has the highest average concentration of 13,704.410 mg kg⁻¹ (Table 3). The high Fe concentration is consistent with the findings Supriyantini & Endrawati (2015) who studied water bodies, sediment and green mussel ([54]na viridis) tissues in the coastal waters of Tanjung Emas Semarang. Haeruddin et al (2020) added that the highest concentration of heavy metals

in sediment was detected near the sites of pollution. Estuary and coastal waters polluted 55th Fe may originate from natural phenomena, such as geological processes like weathering and decomposition of rocks, ore materials and volcanic eruptions that are released into water bodies through runoff, erosion and flooding. Furthermore, Fe is also released by anthropogenic activities such as loading and unloading coal transportation and mining operations (Dalu et al 2020). Anthropogenic activities on land also contribute to the Fe concentration, including: domestic waste, reservoir water, industrial waste deposits and water pipes corrosion carried by rivers to the estuary. The oxidation of iron 3/rite (FeS₂) from coal seams produces sulfuric acid and releases iron (Fe²⁺) (Jaishankar et al 2014).

Heavy metals concentrations in water (mg L⁻¹)

Table 2

Table 3

Heavy	Station 1			Average		Station 2	2	Average	Grand
metals	1 2 3		(SD)	1	2	3	(SD)	average (Grand SD)	
Fe	5.600	5.428	5.900	5.643 (0.239)	11.070	9.505	10.070	10.215 (0.793)	7.929 (2.559)
Zn	0.101	0.073	0.072	0.082 (0.016)	0.122	0.082	0.105	0.103 (0.020)	0.093 (0.020)
Cu	0.027	0.028	0.040	0.032 (0.007)	0.027	0.027	0.030	0.028 (0.002)	0.030 (0.005)
Hg	0.075	0.075	0.075	0.075 (0.000)	0.075	0.075	0.075	0.075 (0.000)	0.075 (0.000)
Cd	0.029	0.035	0.037	0.034 (0.004	0.031	0.033	0.035	0.033 (0.002)	0.033 (0.003)
Pb	0.246	0.275	0.341	0.287	0.197	0.200	0.230	0.209	0.248

Heavy metals concentrations in sediment (mg kg⁻¹ dry weight)

		Station 1					 Grand		
Heavy metals		2	3	- Average (SD)	1	Station 2 2	3	- Average (SD)	average (Grand SD)
Fe	12,978.702	214,818.518	14,696.486	14,164.569 (1028.802)	12,479.87	614,586.872	12,666.00	13,244.251 (116.462)	13,704.410 (1105.315)
Zn	88.481	80.892	79.673	83.015 (4.772)	87.412	80.428	74.291	80.710 (6.565)	81.863 (5.286)
Cu	25.866	44.296	49.521	39.894 (12.427)	25.874	41.463	38.787	35.375 (8.336)	37.635 (9.782)
Hg	0.066	0.017	0.018	0.034 (0.028)	0.065	0.030	0.023	0.039 (0.023)	0.037 (0.023)
Cd	1.464	0.899	0.900	1.088 (0.326)	1.598	0.999	0.991	1.196 (0.348)	1.142 (0.307)
Pb	22.743	25.397	25.359	24.500 (1.521)	21.578	25.277	22.277	23.044 (1.965)	23.772 (1.762)

Heavy metals such as Fe, Pb, Zn, Al and Cu dissolve easily and have a high mobility at pH<5. Fe at low pH will be toxic. Fe concentration >0.3 mg L⁻¹ endanger aquatic organisms' lives (WHO 1993). Small amounts of heavy metal contamination can occur naturally and enter aquatic 19 tems through ore-bearing rocks, windblown dust, forest fires and plants. Because heavy metals cannot be degraded, they are 19 leposited, absorbed or incorporated into water, sediment and fish tissues, resulting in heavy metal pollution 23 water bodies (Malik et al 2010). According to the quality standard of PP RI No. 82 (200179 on the Water Quality Management and Water Pollution Control, the concentration of Fe, Zn, Cu, Hg, Cd and Pb found 45 water bodies in the present study have exceeded the permissible values (maximum concentrations of Zn, Cu, Hg, Cd and

Pb should not exceed 0.05 mg L⁻¹, 0.02 mg L⁻¹, 0.002 mg L⁻¹, 0.001 mg L⁻¹ and 0.03 mg L⁻¹, respectively). Fe concentration limits in water bodies are not required.

In this study, sediment accumulates more heavy metals than water, making it a potential source of heavy metals and the primary storage location for all pollutants (Weber et al 2013). Sediments can hold a wide range of heavy metals in significant and consistent quantities, so they can be 12 sed as a reference to determine the state of water pollution (Haeruddin et al 2020). Sedimentation in estuaries retains a considerable amount of metals which are adsorbed on sediment particity and deposited at the bottom. Estuarine sedimentation retains a considerable amount of metals that are adsorbed on sediment particles and deposited at the bottom. Due to the diminishing environmental conditions of the waterways, low dissolved oxygen and high pH, v55 te containing heavy metals is deposited in the sediment when it enters the estuary, resulting in increasing concentration of entry are consistent with the findings of Dalu et al (2020), which states that the heavy metal concentration of sediment is substantially higher than that of the water bodies because heavy metals entering the water bodies are adsorbed by suspended particles.

Metals accumulate in sediment from leaded gasoline dumps, chemical manufacturing industries, motorized transportation activities, corrosion of underground pipes, coal-fired thermal power points and municipal sewage (Jayaprakash et al 2015). The result is also consistent will the findings of Kumar et al (2019), who discovered that heavy metals concentrations in water are always lower than their concentrations in sediment in polluted water bodies because suspended segment particles adsorb metals from water. Sediment particles containing heavy metals tend to settle to the bottom of water bodies and fish that dwell in mud such as giant mudskipper fish will accumulate heavy metals that enter with food and water.

The concentration of heavy metals in Periophthalmodon schlosseri. Many studies have discovered that indicator species accumulate pollutants in their tissues at a higher rate than their habitats' components, such as water and sediments, and hence have the potential to be employed so a bioindicator instrument in the aquatic ecosystem health biomonitoring pograms. The heavy metal concentrations in P. schlosseri tissues were higher than the eavy metal concentrations found in water bodies, as shown in Table 4. Table 4 shows the highest concentration of Fe was found in the kidney, the highest in skin mucus, the highest Cu in the kidney, the highest Hg in skin mucus, the highest Cd in the liver and the highest Pb in skin mucus.

In this study, heavy metal concentrations in 64 e liver decrease in the following order: Fe>Zn>Cu>Pb>Hg>Cd. In kidney, heavy metal concentrations (87 rease as follows: Fe>Zn>Cu>Pb>Hg>Cd, while in skin mucus they decrease as follows: Zn>Fe>Cu>Pb>Hg>Cd. Fe concentration appears to be the highest in all fish tissues. The findings of this study add to the findings of others who have used *P. schlosseri* as a bioindicator instrument of biomonitoring the quality of estuarine and coastal swamp waters at risk for heavy metal and polycyclic aromatic hydrocarbons (PHAs) pollution, by studying heavy metals bioaccumulation in their tissues (Sinaei & Mashinchian 2014; Buhari & Ismail 2016; Moslen 47 Miebaka 2016; Looi et al 2016; Sarkar & Subrata 2016; Acquavita & Bettoso 2018; Liu et al 2019; Looi et al 2021; Sangur et al 2021).

The high concentration of Fe in fish tissues was produced by the high Fe concentration in sediment and wa bodies. These findings are in line with a study of Gawad (2018), which states that high concentrations of heavy metals in sediment and water allow some aquatic organisms to abs bodies biologically and transfer them the food chain. P. schlosseri can accumulate heavy metals in their tissues because they are at the top of the food chain, they dwell in the benthic mud of the coastal intertidal zones and mangrove forest floors and they are directly exposed to pollutants in estuaries. Estuaries according to Ferreira et al (2019) are a type of habitat that is continuously exposed to heavy metal pollutants.

Table 4 Heavy metals concentrations in *Periophthalmodon schlosseri* (mg kg⁻¹ dry weight)

	-	Station 1			Station 2		Gran	d average	(SD)
Heavy metals	Liver	Kidney	Skin mucus	Liver	Kidney	Skin mucus	Liver	Kidney	Skin mucus
	4.123	7.998	3.833	5.234	7.900	3.803		12.873	5.169 (1.333)
Fe	8.999	11.119	4.999	14.500	18.010	4.879	10.385		
	13.111	15.119	6.999	16.345	17.090	6.500	(5.051)	(4.490)	
Average	8.744	11.412	5.277	12.026	14.333	5.061	(3.031)	(4.470)	
(SD)	(4.499)	(3.570)	(1.601)	(5.954)	(5.590)	(1.358)			
	2.750	1.750	11.498	2.898	2.789	11.780			
Zn	4.495	4.373	10.997	7.878	4.400	10.450	5.437	3.385	8.879 (3.596)
	5.498	3.499	4.248	9.100	3.500	4.300	(2.605)	(1.006)	
Average	4.248	3.207	8.914	6.625	3.563	8.843	(2.003)		
(SD)	(1.391)	(1.336)	(4.049)	(3.285)	(0.807)	(3.990)			
	0.750	4.427	1.767	0.806	4.410	1.705		2.661 (1.445)	0.955 (0.632)
Cu	0.500	1.749	0.375	0.989	1.900	0.350	0.837 - (0.196)		
	0.999	2.499	0.750	0.980	0.980	0.780			
Average	0.750	2.892	0.964	0.925	2.430	0.945			
(SD)	(0.250)	(1.382)	(0.720)	(0.103)	(1.775)	(0.692)			
	0.411	0.301	0.851	0.399	0.299	0.900			0.509
Hg	0.251	0.317	0.257	0.300	0.400	0.190	0.376	0.335	
	0.432	0.340	0.457	0.460	0.350	0.399	(0,082)	(0.038)	(0.300)
Average	0.365	0.319	0.522	0.386	0.350	0.496	(0,082)	(0.030)	(0.300)
(SD)	(0.099)	(0.020)	(0.302)	(0.081)	(0.051)	(0.365)			
	0.357	0.111	0.167	0.356	0.100	0.160			
Cd	0.250	0.250	0.125	0.400	0.280	0.150	0.372	0.178	0.180 (0.049)
	0.499	0.125	0.250	0.367	0.200	0.230	(0.080)	(0.077)	
Average	0.369	0.162	0.181	0.374	0.193	0.180	(0.080)	(0.077)	(0.049)
(SD)	(0.125)	(0.077)	(0.064)	(0.023)	(0.090)	(0.044)			
	0.875	0.311	1.000	0.799	0.301	1.011	0.525		0.626
Pb	0.375	0.375	0.500	0.378	0.389	0.490		0.452 (0.173)	
	0.624	0.625	0.375	0.100	0.710	0.380	(0.294)		(0.299)
Average	0.625	0.437	0.625	0.426	0.467	0.627	(0.254)		(0.299)
(SD)	(0.250)	(0.166)	(0.331)	(0.352)	(0.215)	(0.337)			

Bioaccumulation efficiency. The bio-water accumulation factor (BWAF) is a metric that describes the accumulation of certain heavy metals from water bodies, into ecological receptor networks. The bio-sediment accumulation factor (BSAF) is a metric that describes the accumulation of receptor networks (Jayaprakash et al 2015). Table 5 displays the calculated BWAF and BSAF. BWAF values in the liver, kidney and skin mucus were higher than BSAF values for all metals examined, except for Hg. The result 150f this study are consistent with the conclusions of Gawad (2018), which state that the presence of heavy metals in water bodies and sediments causes an accumulation 200 cess in fish body tissues. Accumulation can occur as a result of the direct absorption of heavy metals in water and in the food chain.

The bioaccumulation of heavy metals in fish tissue is has a negative impact on the ecosystem, being one of the pollution entry points. Bioaccumulation in fish tissues is generally influenced by heavy metal concentrations in water and sediment, diet, fish species, excreton and metabolism. According to Mustafa (2020), the elevated BWAF concentration of all metals in the studized organs indicated that these metals underwent bioaccumulation and biomagnification. These results are in accordance with the findings of Jayaprakash et al (2015) which stated that the heavy metals Ni, Pb, Mn, Co, Cd, Fe and Cu had the highest BWAF concentrations in liver tissue.

The value of the bioaccumulation factor indicates the relationship between the heavy metal concentrations in the water and the heavy metal concentrations in the fish organs. The value of BAF from the environment into fish tissue varies based on

parameters such as heavy metal type, heavy metal bioavailability, environmental pollution level, age, species and tissue metabolite status. Heavy metal concentrations in water can also fluctuate after prolonged rain or drought (Mustafa 2020). Zhou et al (2008) claimed that fish can be used as an excellent biomonitoring instrument for estimating heavy metal concentrations in water. The high BSAF value for Hg in fish tissue might be attributed to pollution of Hg bound to sediments, due to mining and tailings left over from mining operations and discharged into the waterways (Lin et al 2010). Mercury accumulates in sediments originating from various physical, chemical, biological, geological and anthropogenic processes that occur in the environment. Direct Hg pollution (point sources) is often caused by Hg mining, gold mining operations, ore refining and mercury recycling goods or processes as well as the chlor-alkali industry (Randall & Chattopadhyay 2013). The values of BWAF and BSAF are considered as potential bio-indigitors for monitoring the pollution state of the aquatic environment. The BWAF and BSAF tend to vary based on the structure of the food web, trophic level and life history of an organism (Jayaprakash et al 2015).

Table 5
Bio-Water Accumulation Factor (BWAF), Bio-Sediment Accumulation Factor (BSAF),
Coefficient of Variation (CV%) of heavy metal concentration values in liver, kidney and
skin mucus of Periophthalmodon schlosseri

		BWAF			DCAE			CV (0/-)		
Heavy	BWAF				BSAF			CV (%)		
metals	Liver	Kidney	Skin	Liver	Kidney	Skin	Liver	Kidnev	Skin	
IIIetais	Livei	Kluffey	mucus	Livei	Riulley	mucus	Livei	Kiulley	mucus	
Fe	1.310	1.624	0.652	0.001	0.001	0.000	48.634	34.878	25.789	
Zn	58.773	36.596	95.987	0.066	0.041	0.108	47.919	29.720	40.497	
Cu	28.067	89.190	31.994	0.022	0.071	0.025	23.396	54.308	66.209	
Hg	5.007	4.460	6.787	10.288	9.164	13.945	21.748	11.383	58.933	
Cd	11.145	5.330	5.410	0.325	0.156	0.158	21.636	43.199	27.045	
Pb	2.116	1.821	2.522	0.022	0.019	0.026	55.978	38.215	47.709	

The coefficient of variation (CV) was used in this study to evaluate the degree of variability of metal nocentrations in liver, kidney, and skin mucus tissues of giant mudskipper fish. The CV (%) value is used to determine the viability of fish body tissues use as biomonitoring instruments for measur 2g heavy metal pollution (Yap et al 2003). Table 5 shows the a CV sensitivity to the heavy 38 netal accumulation in fish tissues, indicating that the three fish body tissue on ave the potential to be used as an instrument to evaluate heavy metal contamination of Fe, Zn, Cu, Hg, Pb and Cd. zzsed on the CV, the liver is recommended as a potential bioindicator to evaluate water pollution by three heavy metals, namely Pb, Fe and Zn. The kidney is recommended as a potential bioindicator instrument to evaluate water pollution by Cu, Cd and Pb. The skin mucus is recommend as a potential bioindicator instrument to evaluate water pollution by Cu, Hg and Pb. The findings of 10s study suggest that the simultaneous use of liver, kidney and skin mucus tissue as a potential biomonitoring instrument for long-term contamination of Fe, Zn, Cu, Hg, Pb and Cd in the estuary and coastal waters. However, for conservation and animal welfare, it is preferable to use skin mucus 2s the best bioindicator instrument, based on non-invasive ways of biomonitoring heavy metal pollution in waters (Bulloch et al 2020).

The relationship between metal contents in water, sedimest and in Periophthalmodon schlosseri tissues. Relationships between heavy metal concentrations in water, sediment, tissue, and skin muss of P. schlosseri were calculated and recorded in Table 6. Table 6 demonstrates the there is a significant and positive correlation of 0.98 betwish the Fe concentrations in the liver and the kidney, indicating that the presence of Fe concentration in the liver tends to increase the Fe concentration in the kidney. In addition, there is also a significant and positive correlation of 0.81, between Fe concentration in the liver and the skin mucus, and 0.73 between the kidney

and the skin mucus. According to this study, the accumulation of Fe in the water and sediment increases the Fe concentrations in fish skin tissue and mucus. This is consistent with the high concentration of Fe found in water and sediment.

7 Table 6
Correlations between the metal concentrations in water and sediment, and those in the liver, kidney and skin mucus of *Periophthalmodon schlosseri*

	Water	Sediment	Liver	Kidney	Skin mucus
		Fe			
Water	1				
Sediment	-0.55	1			
Liver	0.24	0.34	1		
Kidney	0.22	0.41	0.98	1	
Skin mucus	-0.12	0.36	0.81	0.73	1
		Zn			
Water	1				
Sediment	0.39	1			
Liver	-0.23	-0.91	1		
Kidney	-0.62	-0.66	0.60	1	
Skin mucus	0.24	0.78	-0.63	-0.19	1
		Cu			
Water	1				
Sediment	0.66	1			
Liver	0.44	0.19	1		
Kidney	-0.22	-0.77	-0.20	1	
Skin mucus	-0.23	-0.88	-0.08	0.89	1
		Hg			
Water	1				
Sediment	N/A	1			
Liver	N/A	0.26	1		
Kidney	N/A	-0.55	-0.20	1	
Skin mucus	N/A	0.89	0.53	-0.77	1
		Cd			
Water	1				
Sediment	-0.87	1			
Liver	0.29	-0.13	1		
Kidney	0.35	-0.68	-0,34	1	
Skin mucus	0.50	-0.27	0.77	-0.38	1
		Pb			
Water	1				
Sediment	0.55	1			
Liver	0.07	-0.24	1		
Kidney	0.44	0.10	-0.64	1	
Skin mucus	-0.45	-0.63	0.81	-0.77	1

There is a significant and negative correlation -0.91 between the concentration of Zn in the sediment and the concentration of Zn in the liver, implying that the increase of the Zn concentration in the sediment tends to decrease the concentration of Zn in the liver. Zn is hypothesized to be utilized as a cofactor by cellular antioxidant enzymes such as superoxide dismutase (SOD), as well as in the activities of other enzymes such as carbonic anhydrase enzymes involved in respiration. As a result, the amount of Zn in the liver is re24ced. Furthermore, there is also a significant and positive correlation of 328 between the concentration of Zn in the sediment and the concentration of Zn in skin mucus, indicating that the concentration of Zn in the sediment tends to increase the concentration of Zn in the skin mucus. This finding is consistent with the character of *P. schlosseri*, which is more active in mud-shaped sediments, where pollutants in the

sediments directly come into contact with skin mucus. These findings are also in accordar 12 with the findings of Buhari & Ismail (2016) which showed a significant and positive correlation between the concentrations of Cu, Zn, Pb, Cd a 18 Ni in several P. schlosseri tissues with the metal concentrations in sediment from the West Coast of Peninsular Malaysia, thus 33 icating the ability of the fish to accumulate 17 eavy metals in their tissues. P. schlosseri can accumulate heavy metals in their tissues because they are at the top of the food chain, dwell in the benthic mud of the coastal intertidal zones and mangr 33 forest floors, and are directly exposed to pollutants in estuaries.

There is a significant and positive correlation of 0.89 between the concentration of Cu in the kidney and the skin mucus, which means that the concentration of C27 n the kidney tends to increase the concentration of Cu in the skin mucus. In addition, there is also a significant and negative correlation between 1 u concentrations in sediment and liver (-0.77) and sediment and skin mucus (-0.88). The 44 ndicates that the increase in Cu concentration in the sediment and skin mucus. In this study, an increase i 23 he Cu concentration in the sediment was linked to an increase in the Cu concentration in the kidney, which was followed by an increase in the concentration of Cu in the skin mucus.

Hg concentration in the sedir 11 that and skin mucus has a significant and positive correlation of 0.89, indicating that the concentration of Hg in the sediment tends to increase the concentration of Hg in the skin mucus. Additionally, 46 ere is also a significant and negative correlation of 46 77 between Hg concentration in the kidney and skin mucus. The concentration of Cd in the liver and skin mucus has a significant and positive connection of 0.77, indicating that Cd concentration in that over tends to increase the Cd concentration in skin mucus. In addition, there is a -0.87 correlation between the concentration of Cd in the water and the concentration of 85 in the sediment, indicating that the concentration of Cd in the water tends to decrease the concertation of Cd in the sediment. An increase of the Cd concentration in water produces an increase in the concentration of Cd in the liver, which is followed by an increase in the concentration of Cd in the skin mucus. An increase of the Cd concentration in water bodies isn't always accompanied by increases of the Cd concentration in sediment.

The concentration of Pb in the liver and skin mucus has a significant and positive association of 0.81, indicating that the concentration of Pb in the liver tends to increase the concentration of Pb in the skin mucus. There is also a significant and negative correlation of -0.77 between the concentration of Pb is 20 he kidney and the concentration of Pb in the skin mucus, which implies that as the concentration of Pb in the kidney increases, the concentration of Pb in the skin mucus tends to decrease. An increase of the Pb concentration in the liver was accompanied by a rise of the Pb concentration in the pb concentration in the skin mucus, but an increase of the Pb concentration in the skin mucus.

an increase in Pb concentration in the skin mucls.

The findings of this study indicate that there is a correlation between the concentration of heavy metals in water, sediment, fish tissue and skin mucus of giant mudskippe 42sh. Heavy metal concentrations in mud sediment, which serves as a habitat for fish, is positively and significan 84 correlated with heavy metal concentrations in skin mucus. Following an increase in heavy metal concentrations in the liver and kidney, heavy metal concentrations in skin mucus also increased. This result supports the findings Pandiyan et al (2021) claiming that sediment is a potential source of heavy metals for aquatic biota. Heavy metals from various sources tend to settle in sediments or are released 3 rough food chains and food webs, resulting in bioaccumulation and biomagnification in the aquatic ecosystem. Tis results of this study provide evidence that the giant mudskipper fish has the potential as a bioindicator of heavy metal pollution in estuaries, which is consistent with the findings of Waykar & Petare (2016) stating that the indicator species or sentinel organisms accumulate pollutants in their body tissues at a higher rate than their surroundings.

Heavy metals bioaccumulation in indicator species can reflect metal concentrations in the surrounding water and sediment, making it a useful indicator of environmental quality. The presence of heavy metal concentrations in skin mucus suggests that *P. schlosseri* skin mucus could be used for non-invasive heavy metal

pollution biomonitoring in estuaries, in compliance with the conservation plans requiring the preservation of fish species, particularly of endemic, unique and uncommon species (Dzul-Caamal et al 2016). Following this, subsequent research suggests developing innovative non-interior approaches using fish skin mucus matrix to evaluate fish health and the effects of heavy metal pollution (Santoso et al 2020a; Bulloch et al 2020).

Conclusions. This paper for sed on six heavy metals (Fe, Zn, Cu, Hg, Cd and Pb) found in P. schlosseri, as well as in the water and sediment from the coastal wetlands of Kuala Lupak Estuary of the Barito River, Indonesia. The giant mudskipper fish lives in estuaries' water and muddy sediments. This species is abundant and easy to collect, which makes it a good candidate for biomonitoring in estuaries and coastal wetlands. The avagage heavy metal concentrations in vater at all research locations decrease as follows: Pb>Zn>Hg>Cd>Cu. The average heavy777 etal concentrations in sediments decrease as follows: Fe>Zn>Cu>Pb> 50> Hg. Heavy metal concentrations in all fish tissues of P. schlosseri were higher than the heavy metal concentrations in water bodies. The highest concentration of 532 was found in the kidney; the highest concentration of Zn was found in skin mucus; the highest concentration of 34 was found in the kidney; the highest concentration of Hg was found in skin mucus; the highest concentration of Cd was found in the liver and the highest concentration of Pb was found in skin mucus. In all fish tissues, Fe concentration was the highest. The bio-water accumulation factors of giant mudskippers tissue and skin mucus were signed cantly higher than the bio-sediment accumulation factors, implying that this species can be used as a bioindicates for certain heavy metals in water. Because the coefficients of variation (CV) of the heavy metal accumulation in fish tissues differ, these three fist 21 body tissues can be used simultaneously to evaluate heavy metal contaminat 34 of Fe, Zn, Cu, Hg, Pb and Cd. Based on the CV value, the liver has the potential as a bioindicator of Pb, Fe at Zn pollution in the water. Meanwhile, the kidney has the potential as a bioindicator o 78 u, Cd, and Pb pollution in the water. Furthermore, 40 mucus has the potential as a bioindicator of Cu, Hg and Pb pollution in the water. Heavy metal concentrations in water, sediment, liver, kidney and skin mucus all had a correlation. Heavy metal concentrations in mud sediment, which serves as a habitat for fish, are positively orrelated with heavy metal concentrations in skin mucus. The ability of P. schlosseri to accumulate heavy metals in their tissues is demonstrated in this study. This study indicates that giant mudskipper fish can bioaccumulate various heavy metals to varying degrees in their tissues, allowing them to be utilized as biomonitoring agents to evaluate the heavy metal pollution in coastal wetlands. According to the findings of this study, authorities should focus their efforts on protecting coastal wetland ecosystems or estuaries against heavy metal pollution.

Acknowledgements. The authors thankfully acknowledge the Rector of Lambung Mangkurat University for providing research funding, through the PDWM program, in 2021.

References

- Acquavita A., Bettoso N., 2018 Mercury and selenium in the grass goby *Zosterisessor ophiocephalus* (Pisces: Gobiidae) from a mercury contaminated Mediterranean Lagoon. Marine Pollution Bulletin 135(4):75–82.
- Ansari A. A., Subrata T., Shalini S., Hasibur R., 2014 Mudskipper: a biological indicator for environmental monitoring and assessment of coastal waters. Journal of Entomology and Zoology Studies 2(6):22–33.
- Barbee N. C., Katherine G., Stephen E. S., 2014 Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish. Aquatic Toxicology 152:244–55.
- Bertrand L., Magdalena V. M., Catherine M., María V. A., 2018 Native crustacean species as a bioindicator of freshwater ecosystem pollution: a multivariate and integrative

- study of multi-biomarker response in active river monitoring. Chemosphere 206: 265–277.
- Buhari T. R., Ismail A., 2016 Correlations between geo-chemical speciation of heavy metals (Cu, Zn, Pb, Cd, and Ni) in surface sediments and their concentrations in giant mudskipper (*Periophthalmodon schlosseri*) collected from the West Coast of Peninsular Malaysia. Journal of Geoscience and Environment Protection 4(1):28–36.
- Bulloch P., Sara S., Dhasni M., Zhe X., Wesley J., Mitchell C., Vince P., Guanyong S., Robert L., Gregg T. T., 2020 F2-Isoprostanes in fish mucus: a new, non-invasive method for analyzing a biomarker of oxidative stress. Chemosphere 239(1): 124797
- Carvalho N., Raimunda N. F., Ticianne de Sousa de Oliveira M. A., Suelen R. S. de Oliveira, Audalio R. T. J., William da Silva C., Débora M. S.S., Wanda dos Santos B., Ilka M. R. de Sousa S., Natilene M. B., 2019 Biochemical and morphological responses in *Ucides cordatus* (Crustacea, Decapoda) as indicators of contamination status in mangroves and port areas from Northern Brazil. Environmental Science and Pollution Research 26(16):15884–93.
- Dalu T., Tshivhase R., Cuthbert R. N., Murungweni F. M., Wasserman R. J., 2020 Metal distribution and sediment quality variation across sediment depths of a Subtropical Ramsar Declared Wetland. Water 12(2779):2–15.
- Dwiyitno N. A., Ninoek I., 2008 [Heavy metal residues in fish]. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan 3(2):147–55. [In Indonesian].
- Dzul-Caamal R., Lucia S. C., Hugo F. O. R., Maria A. R. G., Manuel I. G. P., Armando V. L., 2016 Oxidative stress response in the skin mucus layer of *Goodea gracilis* (Hubbs and Turner, 1939) exposed to crude oil: a non-invasive approach. Comparative Biochemistry and Physiology-Part A: Molecular and Integrative Physiology 200:9–20.
- Fahrrunnisa S., 2017 [Bioaccumulation of lead (Pb) in the organ of mudskipper fish (*Periophthalmodon schlosseri*) in Kuala Lupak village, South Kalimantan]. Research Paper. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung Mangkurat, Banjarbaru, 50 p. [In Indonesian].
- Fernández-Alacid L., Ignasi S., Borja O. G., Sergio S. N., Ginés V., Enric G., Marcelino H., Antoni I., 2018 Skin mucus metabolites in response to physiological challenges: a valuable non-invasive method to study teleost marine species. Science of the Total Environment 644:1323–1335.
- Ferreira C. P., Daína L., Raphaella P., Juliano M. V., Jacó J. M., Eduardo A. A., Suelen C. G., 2019 Metal bioaccumulation, oxidative stress, and antioxidant responses in *Oysters crassostrea gasar* transplanted to an estuary in Southern Brazil. Science of the Total Environment 685:332–344.
- Gawad S. S. A., 2018 Concentrations of heavy metals in water, sediment, and mollusk gastropod, *Lanistes carinatus* from lake Manzala, Egypt. Egyptian Journal of Aquatic Research 44(2):77–82.
- Ghotbeddin N. N., Roomiani L., 2020 Identification and the first record of marine bacteria mudskippers *Boleophthalmus dussumieri* (Valenciennes, 1837) by 16S RRNA on the Northern Intertidal Areas of Persian Gulf, Iran. Research Square, 20 p.
- Haeruddin S., Arif R., Abdul G., Sigit B. I., 2020 Spatial distribution and heavy metal pollution analysis in the sediments of Garang Watershed, Semarang, Central Java, Indonesia. AACL Bioflux 13(5):2577–2587.
- Hidayaturrahmah, Mabrur, Heri B. S., Rani S., Ummy S. A. R., Badruzsaufari, 2019 Short communication: protein profiles of giant mudskipper and its potential use as a biomarker candidate for heavy metal contamination in Barito Estuary, Indonesia. Biodiversitas 20(3):745–753.
- Jaishankar M., Tenzin T., Naresh A., Blessy B. M., Krishnamurthy N. B., 2014 Toxicity, mechanism, and health effects of some heavy metals. Interdisciplinary Toxicology 7(2):60–72.
- Jayaprakash M., Kumar R. S., Giridharan L., Sujitha S. B., Sarkar S. K., Jonathan M. P., 2015 Bioaccumulation of metals in fish species from water and sediments in

- Macrotidal Ennore Creek, Chennai, SE Coast of India: A Metropolitan City effect. Ecotoxicology and Environmental Safety 120:243–55.
- Kim J. W., Chul W. O., Ju C. K., 2017 Antioxidant responses, neurotoxicity, and metallothionein gene expression in juvenile korean rockfish Sebastes schlegelii under dietary lead exposure. Journal of Aquatic Animal Health 29(2):112–119.
- Kotze P., Du Preez H. H., Van Vuren J. H. J., 1999 Bioaccumulation of copper and zinc in Oreochromis mossambicus and Clarias gariepinus from the Olifants River, Mpumalanga, South Africa. Water SA 25(1):99–110.
- Kumar M., Neelima G., Arun R., Yashika A., Rajesh P., Abha T., Sunil P. T., 2019 Biomonitoring of heavy metals in River Ganga water, sediments, plant, and fishes of different trophic levels. Biological Trace Element Research 193:536–547.
- Lin Y., Thorjørn L., Rolf D. V., Xinbin F., 2010 Identification of fractions of mercury in water, soil, and sediment from a typical Hg mining area in Wanshan, Guizhou Province, China. Applied Geochemistry 25(1):60–68.
- Liu Q., Xiaoqun X., Jiangning Z., Xiaolai S., Yibo L., Ping D., Yanbin T., Wei H., Quanzhen C., Lu S., 2019 Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin 141(36):215–26.
- Looi L. J., Ahmad Z. A., Hazzeman H., Fatimah M. Y., Zailina H., 2016 The levels of mercury, methylmercury, and selenium, and the selenium health benefit value in grey-eel catfish (*Plotosus canius*) and giant mudskipper (*Periophthalmodon schlosseri*) from the Strait of Malacca. Chemosphere 152:265–273.
- Looi L. J., Ahmad Z. A., Noorain M. I., Fatimah M. Y., Hazzeman H., 2021 Elemental composition and health risk assessment of giant mudskipper (*Periophthalmodon schlosseri*) from the intertidal zone of the West Coast of Peninsular Malaysia. Frontiers in Marine Science 7(1):1-14.
- Malik N., Biswas A. K., Qureshi T. A., Borana K., Virha R., 2010 Bioaccumulation of heavy tetals in fish tissues of a freshwater Lake of Bhopal. Environmental Monitoring and Assessment 160(1–4):267–726.
- Marques D. da Silva, Patrícia G. C., Gustavo M. S., Janaína G. C., Indianara F. B., Adalto B., 2019 Selection of biochemical and physiological parameters in the croaker *Micropogonias furnieri* as biomarkers of chemical contamination in estuaries using a Generalized Additive Model (GAM). Science of the Total Environment 647(1):1456-1467.
- Moslen M., Miebaka C. A., 2016 Temporal variation of heavy metal concentrations in *Periophthalmus sp.* obtained from Azuabie Creek in the Upper Bonny Estuary, Nigeria. Journal of Science Technology 3(2):136-147.
- Mustafa S. A., 2020 Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. Egyptian Journal of Aquatic Research 46(2):123-129.
- Rajeshkumar S., Xiaoyu L., 2018 Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicology Reports 5:288–295.
- Randall P. M., Chattopadhyay S., 2013 Mercury contaminated sediment sites an evaluation of remedial options. Environmental Research 125:131–149.
- Salgado L. D., Antonio E. M. L. M., Rafael D. K., Fernando G. de Oliveira, Sarah L. M., Barbara A. de Lima, Maritana M. P., Marta M. C., Júlio C. R. de Azevedo, Helena C. S. de Assis, 2019 Integrated assessment of sediment contaminant levels and biological responses in sentinel fish species Atherinella brasiliensis from a Sub-Tropical Estuary in South Atlantic. Chemosphere (219):15–27.
- Sangur K., Fredy L., Hasan T., Laura V. T., Sisilya V. S., Costantina R., Olivia B. S., Chimberly M., Dominggus R., 2021 Mudskipper as an indicator species for lead, cadmium and cuprum heavy metal pollution in the mangrove, Ambon, Indonesia. Journal of Ecological Engineering 22(4):1–19.
- Santoso H. B., Eko S., Rizmi Y., Danang B., 2020a Epidermal mucus as a potential biological matrix for fish health analysis. Egyptian Journal of Aquatic Biology and Fisheries 24(6):361–82.

- Santoso H. B., Eko S., Rizmi Y., Danang B., 2020b Mudskipper fish as a bio-indicator for heavy metals pollution in a coastal wetland. Egyptian Journal of Aquatic Biology & Fisheries 24(7):1073–1095.
- Sarah R., Baby T., Nida I., Abeer H., Elsayed F. A. A., 2019 Bioaccumulation of heavy metals in *Channa punctatus* (Bloch) in River Ramganga (U.P.), India. Saudi Journal of Biological Sciences 26(5):979–984.
- Sarkar S. K, Subrata K. D., 2016 Electron microscope based x-ray microanalysis on bioaccumulation of heavy metals and neural degeneration in mudskipper (*Pseudapocryptes lanceolatus*). Journal of Microscopy and Ultrastructure 4(4):211.
- Shaaban E. A., Gawad S. A. A., El-Feky F. A., El-Sayed A. A. M., Mahmoud N. H., 2017 Bioaccumulation of cadmium and lead in the freshwater crayfish *Procambarus clarkii* (Girard 1982) from The River Nile, Egypt. Al Azhar Bulletin of Science 9(3):219–233.
- Shirani M., Alireza M., Hamid F., Mohammad A., 2012a Biomarker responses in mudskipper (*Periophthalmus waltoni*) from the coastal areas of the Persian Gulf with oil pollution. Environmental Toxicology and Pharmacology 34(3):705–713.
- Shirani M., Alireza M., Hamid F., Mohammad A., 2012b EROD & GST responses in liver of mudskipper *Periophthalmus waltoni* at oil polluted areas. International Conference on Ecological, Environmental and Biological Sciences 2011–2013.
- Sia Su G. L., Gliceria B. R., Maria L. L. S. S., 2013 Bioaccumulation and histopathological alteration of total lead in selected fishes from Manila Bay, Philippines. Saudi Journal of Biological Sciences 20(4):353–355.
- Sinaei M., Maschinchian A., 2014 Polycyclic aromatic hydrocarbons in the coastal sea water, the surface sediment and mudskipper *Boleophthalmus dussumieri* from coastal areas of the Persian Gulf: source investigation, composition pattern and spatial distribution. Journal of Environmental Health Science and Engineering 12(1):1–11.
- Sinha A. K., Nicholas R., Jyotsna S., Jesus M., West M. B., 2020 Oxidative stress, histopathological alterations, and antioxidant capacity in different tissues of largemouth bass (*Micropterus salmoides*) exposed to a newly developed sodium carbonate peroxyhydrate granular algaecide formulated with hydrogen peroxide. Aquatic Toxicology 218 (2019):105348.
- Sofarini D., Abdur R., Ichsan R., 2012 [Heavy metal test modeling on water bodies, biota and sediments in the estuary waters of the Barito watershed]. Bumi Lestari 12(1):32–44. [In Indonesian].
- Sopiana Y., Ika C., Lina S., 2018 Land use of the Barito watershed (DAS), efforts to identify the socio-economic characteristics of the community. In: Community service through dissemination of applied research results. Gunarto T., Hendrawati E., Ekagamayuni R., Hamzah L. M., Budiarti I. (eds), pp. 83–91, Universitas Lampung, Lampung, Indonesia. [In Indonesian].
- Supriyantini E., Endrawati H., 2015 [The content of heavy metal iron (Fe) in water, sediment, and green mussels (*Perna viridis*) in the waters of Tanjung Emas Semarang]. Jurnal Kelautan Tropis 18(1):38–45. [In Indonesian].
- Tabrez S., Torki A. Z., Mehjbeen J., 2021 Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi Journal of Biological Sciences 28(2):1459–1464.
- Usero J., José M., Ignacio G., 2005 Heavy metal concentrations in molluscs from the Atlantic Coast of Southern Spain. Chemosphere 59(8):1175–1181.
- Waykar B., Petare R., 2016 Studies on monitoring the heavy metal contents in water, sediment, and snail species in Latipada Reservoir. Journal of Environmental Biology 37(6):585–589.
- Weber P., Everton R. B., Camila D. L. K., Daniel S. V., Erico M. M. F., Valderi L. D., Bernardo B., 2013 Metals in the water, sediment, and tissues of two fish species from different trophic levels in a Subtropical Brazilian River. Microchemical Journal 106:61–66.
- Yap C. K., Ismail A., Tan S. G., Rahim I. A., 2003 Can the shell of the green-lipped mussel *Perna viridis* from the West Coast of Peninsular Malaysia be a potential

- biomonitoring material for Cd, Pb, and Zn? Estuarine, Coastal and Shelf Science 57(4):623-630.
- Zhang Z., Nancai P., Yuxin S., Jialiang L., Xueping L., Shen Y., Xiangrong X., Yongxia H., Bixian M., 2019 Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China. Environmental Research, pp. 145–152.
- Zhou Q., Jianbin Z., Jianjie F., Jianbo S., Guibin J., 2008 Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606(2):135–150.
- *** Health Research Ethics Committee No. 549/KPEK-FK ULM/EC/III/2021, Faculty of Medicine. Lambung Mangkurat University Banjarmasin, Indonesia.
- *** PP RI No 82 of 2001 [Water quality management and water pollution control]. Jakarta, Indonesia. [In Indonesian].
- *** WHO, 1993 Guideline for drinking water quality second edition, https://www.lenntech.com/who-eu-water-standards.htm

Received: 02 August 2021. Accepted: 08 October 2021. Published online: 20 October 2021. Authors:

Heri Budi Santoso, Lambung Mangkurat University, Faculty of Mathematics and Natural Sciences, Department of Biology, Banjarbaru, South Kalimantan, Indonesia; Doctoral Program of Agricultural Science, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia, e-mail: heribudisantoso@ulm.ac.id Hidatarurrahmah, Lambung Mangkurat University, Faculty of Mathematics and Natural Sciences, Department of Biology, Banjarbaru, South Kalimantan, Indonesia, e-mail: hidayaturrahmah@ulm.ac.id Eko Suhartono, Lambung Mangkurat University, Faculty of Medicine, Department of Medical Chemistry/Biochemistry, Banjarbaru, South Kalimantan, Indonesia, e-mail: ekoantioxidant@gmail.com Rizmi Yunita, Lambung Mangkurat University, Faculty of Fisheries and Marine Sciences, Department of Aquatic Resources Management, Banjarbaru, South Kalimantan, Indonesia, e-mail: rizmiyunita@ulm.ac.id Danang Biyatmoko, Lambung Mangkurat University, Faculty of Agriculture, Department of Animal Science, Banjarbaru, South Kalimantan, Indonesia, e-mail: danangbiyatmoko@ulm.ac.id Dewi Anggraini, Lambung Mangkurat University, Faculty of Mathematics and Natural Sciences, Department of Statistics, Banjarbaru, South Kalimantan, Indonesia, e-mail: dewi.anggraini@ulm.ac.id This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original authors and source are credited.

How to cite this article:

Santoso H. B., Hidayaturrahmah, Suhartono E., Yunita R., Biyatmoko D., Anggraini D., 2021 Heavy metal concentrations in water, sediment, and giant mudskipper (*Periophthalmodon schlosseri*) in the coastal wetlands of Kuala Lupak estuary of the Barito River, Indonesia. AACL Bioflux 14(5):2878-2893.

2021-Heavy_Metal.pdf

ORIGINALITY REPORT

19% SIMILARITY INDEX

%
INTERNET SOURCES

19%
PUBLICATIONS

%

STUDENT PAPERS

PRIMARY SOURCES

Publication

- M. A Ogundiran,, S. O Adewoye,, T. A Ayandiran,, S. O Dahunsi,. "Heavy metal, proximate and microbial profile of some selected commercial marine fish collected from two markets in south western Nigeria", African Journal of Biotechnology, 2014
- Kristin Sangur, Fredy Leiwakabessy, Hasan Tuaputty, Laura Tuwankotta et al.
 "Mudskipper as an Indicator Species for Lead, Cadmium and Cuprum Heavy Metal Pollution in the Mangrove, Ambon, Indonesia", Journal of Ecological Engineering, 2021

Manjula Menon, Rangaswamy Mohanraj, Joemon VB, Akil Prasath RV. "Bioaccumulation of heavy metals in a gastropod species at the Kole wetland agroecosystem, a Ramsar site", Journal of Environmental Management, 2023

1 %

1 %

1 %

Elsayed A. Khallaf, Mohammad M.N.
Authman, Alaa A. Alne-na-ei. "Contamination and Ecological Hazard Assessment of Heavy

1 %

Metals in Freshwater Sediments and Oreochromis niloticus (Linnaeus, 1758) Fish Muscles in a Nile River Canal in Egypt", Environmental Science and Pollution

Publication

Research, 2018

Zohra Ben Salem, Habib Ayadi. "Heavy metal accumulation in Diplodus annularis, Liza aurata, and Solea vulgaris relevant to their concentration in water and sediment from the southwestern Mediterranean (coast of Sfax)", Environmental Science and Pollution Research, 2016

1%

Publication

M. Jayaprakash, R. Senthil Kumar, L. Giridharan, S.B. Sujitha, S.K. Sarkar, M.P. Jonathan. "Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect", Ecotoxicology and Environmental Safety, 2015

1%

AO Lawal Are, RO Moruf, UJ Sobara, KB Salami. "Relationship Between Mercury Concentration in Water, Bottom Sediment

And Two Mollusc Species (Crassostrea Gasar and Tympanotonus Fuscatus) From a Lagos Creek in Nigeria", Journal of Bio-Science, 2021

Publication

- Manoj Kumar, Neelima Gupta, Arun Ratn, Yashika Awasthi, Rajesh Prasad, Abha Trivedi, Sunil P. Trivedi. "Biomonitoring of Heavy Metals in River Ganga Water, Sediments, Plant, and Fishes of Different Trophic Levels", Biological Trace Element Research, 2019
- Séverine Ladislas, Amelène El-Mufleh, Claire Gérente, Florent Chazarenc, Yves Andrès, Béatrice Béchet. "Potential of Aquatic Macrophytes as Bioindicators of Heavy Metal Pollution in Urban Stormwater Runoff", Water, Air, & Soil Pollution, 2011
- C.K. Yap, A. Ismail, S.G. Tan, I. Abdul Rahim.
 "Can the shell of the green-lipped mussel
 Perna viridis from the west coast of
 Peninsular Malaysia be a potential
 biomonitoring material for Cd, Pb and Zn?",
 Estuarine, Coastal and Shelf Science, 2003
 Publication
- Jelena Vranković, Milena Janković-Tomanić, Tanja Vukov. "Comparative assessment of biomarker response to tissue metal

<1%

<1%

<1%

concentrations in urban populations of the land snail Helix pomatia (Pulmonata: Helicidae)", Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2020

Publication

P. Karthikeyan, S.R. Marigoudar, D. Mohan, A. Nagarjuna, K.V. Sharma. "Ecological risk from heavy metals in Ennore estuary, South East coast of India", Environmental Chemistry and Ecotoxicology, 2020

<1%

Publication

Dounia Keddari, Imane Smatti-Hamza, Smail Mehennaoui, Leila Sahli, Fatima-Zohra Afri-Mehennaoui. "Occurrence and distribution of heavy metals in the tissues of (D.) in relation to the contamination level of sediments from Boumerzoug wadi (Algeria) ", Environmental Forensics, 2021

<1%

Publication

Raimunda Nonata Fortes Carvalho Neta,
Ticianne de Sousa de Oliveira Mota Andrade,
Suelen Rosana Sampaio de Oliveira, Audalio
Rebelo Torres Junior et al. "Biochemical and
morphological responses in Ucides cordatus
(Crustacea, Decapoda) as indicators of
contamination status in mangroves and port

areas from northern Brazil", Environmental Science and Pollution Research, 2019

Publication

Sivakumar Rajeshkumar, Xiaoyu Li.
"Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China", Toxicology Reports, 2018

Publication

<1%

D.S. Malik, Pradip Kumar Maurya. "Heavy metal concentration in water, sediment, and tissues of fish species (and) from Kali River, India ", Toxicological & Environmental Chemistry, 2015

<1%

Publication

Sara E. Gallego Ríos, Claudia M. Ramírez, Beatriz E. López, Sara M. Macías, Jenny Leal, Claudia M. Velásquez. "Evaluation of Mercury, Lead, Arsenic, and Cadmium in Some Species of Fish in the Atrato River Delta, Gulf of Urabá, Colombian Caribbean", Water, Air, & Soil Pollution, 2018

<1%

Publication

Amina Ibrahim, Ahmed Abdel-Haleem, Rania Gamal Taha. "Biomphalaria alexandrina snail as a bio-indicator of pollution with Manganese metal and its effect on physiological, immunological, histopathological parameters

and larvicidal potencies", Research Square Platform LLC, 2022

Publication

19

Mehrnaz Asefi, Rasool Zamani-Ahmadmahmoodi. "Mercury concentrations and health risk assessment for two fish species, Barbus grypus and Barbus luteus, from the Maroon River, Khuzestan Province, Iran", Environmental Monitoring and Assessment, 2015

<1%

Publication

20

Sara Elisa Gallego Ríos, Claudia María Ramírez Botero, Beatriz Estella López Marín, Claudia M. Velásquez Rodríguez. "Evaluation of mercury, lead, and cadmium in the waste material of crevalle jack fish from the Gulf of Urabá, Colombian Caribbean, as a possible raw material in the production of subproducts", Environmental Monitoring and Assessment, 2018

<1%

Publication

21

Soad S. Abdel Gawad, Awaad A. M. El-Saied, Neveen H. Mahmoud, Faten A. El-Fiqy, Eman A. Shaaban. "The use of freshwater crayfish Procambarus clarkii as an indicator of the bioavailability of some heavy metals in different watercourses in Egypt and the risk

assessment of these metals", Egyptian Journal of Aquatic Biology and Fisheries, 2018

Akcali, I.. "A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas", Marine Pollution Bulletin, 201103

<1%

Publication

C. Hinck-Kneip. "Influences of gold on zinc, copper and metallothionein kinetics in liver and kidney of the rat", Human & Experimental Toxicology, 06/01/1996

<1%

Publication

Minwei Han, Ruijie Zhang, Kefu Yu, Annan Yan, Haolan Li, Ruiling Zhang, Weibin Zeng, Zhengen Zhang, Fang Liu. "Environmental fate and effects of PAHs in tropical mariculture ponds near the northern South China Sea: Rainfall plays a key role", Science of The Total Environment, 2022

<1%

Publication

Vahid Noroozi Karbasdehi, Sina Dobaradaran, Iraj Nabipour, Afshin Ostovar et al. "A new bioindicator, shell of Trachycardium lacunosum, and sediment samples to monitors metals (Al, Zn, Fe, Mn, Ni, V, Co, Cr and Cu) in marine environment: The Persian

Gulf as a case", Journal of Environmental Health Science and Engineering, 2016

Publication

Publication

Publication

Carlos A. da Silva, Carlos A.B. Garcia,
Hortência L.P. de Santana, Gabriela C. de
Pontes et al. "Metal and metalloid
concentrations in marine fish marketed in
Salvador, BA, northeastern Brazil, and
associated human health risks", Regional
Studies in Marine Science, 2021

<1%

Sahar Mohammadnabizadeh, Alireza Pourkhabbaz, Reza Afshari, Mohsen Nowrouzi. " Concentrations of Cd, Ni, Pb, and Cr in the two edible fish species and collected from Hara biosphere in Iran ", Toxicological & Environmental Chemistry, 2012

<1%

M Hashim, D L Setyowati, Suroso, K DI A P Yohanes. "Water quality during the rainy seasons and drought seasons in the Garang River Basin (Semarang, Indonesia)", IOP Conference Series: Earth and Environmental Science, 2022

<1%

Wanda Batista de Jesus, Ticianne de Sousa de Oliveira Mota Andrade, Sâmea Heloá Soares, Débora Batista Pinheiro-Sousa et al.

"Biomarkers and occurrences of heavy metals in sediment and the bioaccumulation of metals in crabs (Ucides cordatus) in impacted mangroves on the Amazon coast, Brazil", Chemosphere, 2021

Publication

Yousef S. Saleh, Mohamed-Assem S. Marie.
"Assessment of metal contamination in water, sediment, and tissues of Arius thalassinus fish from the Red Sea coast of Yemen and the potential human risk assessment", Environmental Science and Pollution Research, 2014

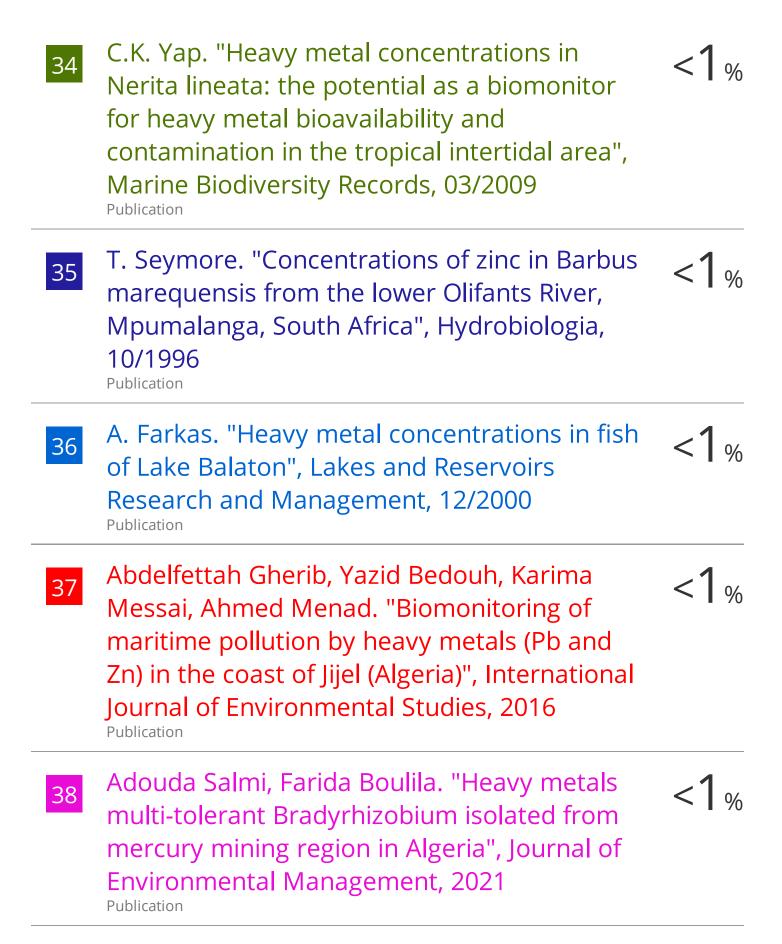
<1%

Publication

"Fish and Fisheries in Estuaries", Wiley, 2022

<1%

A. A. Adeniyi. "Assessment of the exposure of two fish species to metals pollution in the Ogun river catchments, Ketu, Lagos, Nigeria", Environmental Monitoring and Assessment, 02/2008


<1%

Publication

Aljahdali, Alhassan. "Metallic Pollution and the Use of Antioxidant Enzymes as Biomarkers in Bellamya Unicolor (Olivier, 1804) (Gastropoda: Bellamyinae)", Water, 2020

<1%

Publication

Mehrnoosh Shirani, Alireza Mirvaghefi, Hamid Farahmand, Mohammad Abdollahi.
"Biomarker responses in mudskipper (Periophthalmus waltoni) from the coastal areas of the Persian Gulf with oil pollution", Environmental Toxicology and Pharmacology, 2012

<1%

Publication

Publication

Sanaa Abdulaziz Mustafa. "Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq", The Egyptian Journal of Aquatic Research, 2020

<1%

Anbazhagan Vinothkannan, Partheeban Emmanuel Charles, Rajendran Rajaram.
"Ecological risk assessment and seasonal variation of heavy metals in water and sediment collected from industrially polluted Cuddalore coast, Southeastern India", Regional Studies in Marine Science, 2021

<1%

Koe Wei Wong, Chee Kong Yap, Rosimah Nulit, Mohd Suhaimi Hamzah, Soo Kien Chen, Wan Hee Cheng, Ali Karami, Salman Abdo Al-Shami. "Effects of anthropogenic activities on the heavy metal levels in the clams and

sediments in a tropical river", Environmental Science and Pollution Research, 2016

Publication

43

Peiyu Wang, Renwu Zhou, Rusen Zhou, Lihui Yu et al. "Epidermal Growth Factor potentiates EGFR(Y992/1173)-mediated therapeutic response of triple negative breast cancer cells to cold atmospheric plasmaactivated medium", Cold Spring Harbor Laboratory, 2023

<1%

Publication

44

Sylwia Borowska, Małgorzata Brzóska, Małgorzata Gałażyn-Sidorczuk, Joanna Rogalska. "Effect of an Extract from Aronia melanocarpa L. Berries on the Body Status of Zinc and Copper under Chronic Exposure to Cadmium: An In Vivo Experimental Study", Nutrients, 2017

<1%

Publication

45

Prince Emeka Ndimele, Musa O. Pedro, Julius Ibukun Agboola, Kanayo Stephen Chukwuka, Alice O. Ekwu. "Heavy metal accumulation in organs of Oreochromis niloticus (Linnaeus, 1758) from industrial effluent-polluted aquatic ecosystem in Lagos, Nigeria", Environmental Monitoring and Assessment, 2017
Publication

- H. Le, D. LiHua, F. JianJun, L. Peng, G. SongLin. 46 "Immunogenicity study of an expressed outer membrane protein U of in Japanese eel ()", Journal of Applied Microbiology, 2018
- <1%

Publication

Guofa Ren, Xiaoling Yan, Xiaodong Chu, 47 Yunmei Cai, Yichao Shi, Kewen Zheng, Zhiqiang Yu. "Polybrominated diphenyl ethers and polychlorinated biphenyls in mangrove sediments of Shantou, China: Occurrence, profiles, depth-distribution, and risk assessment", Ecotoxicology and Environmental Safety, 2019

<1%

Publication

M. M. Fuad, N. A. M. Shazili, M. Faridah. " 48 Trace metals and rare earth elements in Rock Oyster along the east coast of Peninsular Malaysia ", Aquatic Ecosystem Health & Management, 2013

<1%

Publication

Taher, M.A.. "Determination of trace copper in 49 biological and environmental samples by third derivative spectrophotometry after preconcentration with the ion pair of nitroso-R and tetradecyldimethylbenzylammonium chloride on microcrystalline naphthalene", Analytica Chimica Acta, 20000309

<1%

Publication

C.K. Yap, F.B. Edward, B.H. Pang, A. Ismail, S.G. Tan, H.A. Jambari. "Distribution of heavy metal concentrations in the different soft tissues of the freshwater snail (D'Orbigny, 1839; Gastropoda), and sediments collected from polluted and unpolluted sites from Malaysia ", Toxicological & Environmental Chemistry, 2009

<1%

Publication

Publication

Yalçın Tepe. "Assessment of heavy metals in two commercial fish species of four Turkish seas", Environmental Monitoring and Assessment, 11/2008

Publication

<1%

Kantha DeiviArunachalam, Jaya Krishna Kuruva, Kumara Perumal Pradhoshini, Mohamed Saiyad Musthafa, Caterina Faggio. "Antioxidant and antigenotoxic potential of Morinda tinctoria Roxb. leaf extract succeeding cadmium exposure in Asian catfish, Pangasius sutchi", Comparative Biochemistry and Physiology Part C:

Toxicology & Pharmacology, 2021

<1%

Retief, N.R.. "The use of cestode parasites from the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam, South Africa as

indicators of heavy metal bioaccumulation", Physics and Chemistry of the Earth, 2006

Publication

Shafeeq Ur Rahman, Ghulam Yasin,
Muhammad Farrakh Nawaz, Hefa Cheng et al.
"Evaluation of heavy metal phytoremediation
potential of six tree species of Faisalabad city
of Pakistan during summer and winter
seasons", Journal of Environmental
Management, 2022

<1%

Publication

Tatenda Dalu, Rolindela Tshivhase, Ross N. Cuthbert, Florence M. Murungweni, Ryan J. Wasserman. "Metal Distribution and Sediment Quality Variation across Sediment Depths of a Subtropical Ramsar Declared Wetland", Water, 2020

<1%

Publication

Zongxing Wang, Xiang Gu, Wei Ouyang,
Chunye Lin, Jing Zhu, Ling Xu, Xitao Liu,
Mengchang He, Baodong Wang.
"Trophodynamics of arsenic for different
species in coastal regions of the Northwest

<1%

Pacific Ocean: In situ evidence and a metaanalysis", Water Research, 2020

Publication

57

A. Siebert, I. Bruns, G.-J. Krauss, J. Miersch, B. Markert. "The use of the aquatic moss

Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals", Science of The Total Environment, 1996

Publication

Arash Shakouri, Haniyeh Gheytasi.
"Bioaccumulation of heavy metals in oyster (
Saccostrea cucullata) from Chabahar bay
coast in Oman Sea: Regional, seasonal and
size-dependent variations", Marine Pollution
Bulletin, 2018

<1%

Publication

Azadeh Shahbazi, Mohammad Pauzi Zakaria, Chee Kong Yap, Soon Guan Tan et al. " Use of Different Tissues of as Biomonitors of Polycyclic Aromatic Hydrocarbons (PAHs) in the Coastal Waters of Peninsular Malaysia ", Environmental Forensics, 2010

<1%

Publication

Ewa M. Mogihricka. "Comparative studies on the distribution of gold, copper and zinc in the livers and kidneys of rats and hamsters after treatment with sodium [195/Au]-aurothiomalate", Journal of Applied Toxicology, 12/1981

<1%

Publication

Haris, Hazzeman, Ahmad Zaharin Aris, and Mazlin bin Mokhtar. "Mercury and methylmercury distribution in the intertidal

surface sediment of a heavily anthrophogenically impacted saltwatermangrove-sediment interplay zone", Chemosphere, 2017.

Publication

Ley Juen Looi, Ahmad Zaharin Aris, Noorain Mohd Isa, Fatimah Md. Yusoff, Hazzeman Haris. "Elemental Composition and Health Risk Assessment of Giant Mudskipper (Periophthalmodon schlosseri) From the Intertidal Zone of the West Coast of Peninsular Malaysia", Frontiers in Marine Science, 2021

<1%

- Publication
- Rejomon George, Shih-Chieh Hsu, S.
 Muraleedharan Nair, G. D. Martin, K. K. C.
 Nair. "Trace Metal Dynamics in Marine
 Shrimps from the Southwest Coast of India",
 Environmental Forensics, 2011

<1%

Vlatka Filipović Marijić, Biserka Raspor. "Metal distribution among gut content, intestinal tissue and cytosol of chub (Leuciscus cephalus L.) from Sava River", Toxicology Letters, 2007

<1%

Weber, Paula, Everton Rodolfo Behr, Camila De Lellis Knorr, Daniel Secretti Vendruscolo, Erico M.M. Flores, Valderi L. Dressler, and

Bernardo Baldisserotto. "Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river", Microchemical Journal, 2013.

Publication

Afroza Parvin, Md Kamal Hossain, Umme Fatema Shahjadee, Sharmin Akter Lisa et al. "Trace metal exposure and human health consequences through consumption of market-available Oreochromis niloticus (L.) in Bangladesh", Environmental Science and Pollution Research, 2023

<1%

Publication

Amr A. Abdel-Khalek. "Risk Assessment,
Bioaccumulation of Metals and
Histopathological Alterations in Nile tilapia
(Oreochromis niloticus) Facing Degraded
Aquatic Conditions", Bulletin of Environmental
Contamination and Toxicology, 2014

<1%

Ben Salem Zohra, Ayadi Habib. "Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia)", Environmental Science and Pollution Research, 2016

<1%

Publication

- CD Ezeonyejiaku, MO Obiakor. "Metal enrichment in water and fish in a semi-urban Nigerian lake, and their associated risks", African Journal of Aquatic Science, 2016
- <1%

<1%

<1%

Dyan Maulani, Kholis Nofianti, Noor Sugijanto, Sugijanto Kartosentono. "An Eco-Friendly Absorption Method of Cu²⁺, Cd²⁺, and Pb²⁺ Using the Shells and Chitosan Derived from *Solen vagina*", Journal of Ecological Engineering, 2021

Publication

Elisa Petranich, Luca Terribili, Alessandro
Acquavita, Elena Pavoni, Leonardo Langone,
Stefano Covelli. "The Role of a Tidal Flat—
Saltmarsh System as a Source–Sink of
Mercury in a Contaminated Coastal Lagoon
Environment (Northern Adriatic Sea)", Aquatic
Geochemistry, 2020

Publication

Emily K. Armstrong, Julie Mondon, Adam D. Miller, Andrew T. Revill et al. "Transcriptomic and Histological Analysis of the Greentail Prawn () Following Light Crude Oil Exposure ", Environmental Toxicology and Chemistry, 2022

Publication

Ewa, Łuszczek-Trojnar, Sionkowski Jan, Drąg-Kozak Ewa, and Popek Włodzimierz. "Copper and lead accumulation in common carp females during long-term dietary exposure to these metals in pond conditions", Aquaculture Research, 2015.

<1%

Publication

Huaxin Li, Weiwei Jiang, Yulong Pan, Fujuan Li, Chunhui Wang, Hua Tian. "Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China", Marine Pollution Bulletin, 2021

<1%

Publication

Hui Liu, Hongmei Bu, Guihua Liu, Zhixiu Wang, Wenzhi Liu. "Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds", Environmental Science and Pollution Research, 2015

<1%

Publication

Ismail Marzuki, Early Septiningsih, Ernawati Syahruddin Kaseng, Herlinah Herlinah et al. "Investigation of Global Trends of Pollutants in Marine Ecosystems around Barrang Caddi Island, Spermonde Archipelago Cluster: An Ecological Approach", Toxics, 2022

77

Kalpana Chhaya Lakra, Arup Mistri, Tarun Kumar Banerjee, Bechan Lal. "Analyses of the health status, risk assessment and recovery response of the nutritionally important catfish Clarias batrachus reared in coal mine effluent-fed pond water: a biochemical, haematological and histopathological investigation", Environmental Science and Pollution Research, 2022

<1%

Publication

78

N. Affizah, V.J. Vedamanikam, N.A.M. Shazilli. "Concentration of arsenic and mercury in the oyster () from Setiu lagoon, Terengganu ", Toxicological & Environmental Chemistry, 2009

<1%

Publication

79

Nicoletta Calace, Nicola Cardellicchio, Silvia Ciardullo, Bianca Maria Petronio, Massimiliana Pietrantonio, Marco Pietroletti. "Metal distribution in marine sediments of the Mar Piccolo in Taranto (Ionic Sea, southern Italy)", Toxicological & Environmental Chemistry, 2008

<1%

Publication

80

Oluwadamilare Emmanuel Obayemi, Mary Adebola Ayoade, Olaniyi Olusola Komolafe. "Health risk assessment of heavy metals in

Coptodon zillii and Parachanna obscura from a tropical reservoir", Heliyon, 2023

Publication

Soma Giri, Abhay Kumar Singh. "Assessment of human health risk for heavy metals in fish and shrimp collected from Subarnarekha river, India", International Journal of Environmental Health Research, 2013

Publication

<1%

Songlin Guo, Linlin Hu, Jianjun Feng, Peng Lin, Le He, Qingpi Yan. "Immunogenicity of a bivalent protein as a vaccine against and in Japanese eel ()", MicrobiologyOpen, 2019

<1%

Abdel-Fattah B. Dawood, Ahmed A. Aly, Moustafa Ibrahim, Juan E. Andrade Laborde et al. "Biophysical, histological, and bioaccumulation properties of Tilapia muscle affected by water pollution with heavy elements and microbes at the El-Rahawy drain in Egypt", Heliyon, 2023

<1%

Bragazza, L.. "Heavy metals in bog waters: An alternative way to assess atmospheric precipitation quality?", Global and Planetary Change, 200610

<1%

Publication

85

Carmen Pérez-Sirvent, María Luz García-Lorenzo, María José Martínez-Sánchez, José Molina-Ruiz et al. "Use of marble cutting sludges for remediating soils and sediments contaminated by heavy metals", Environmental Progress & Sustainable Energy, 2011

<1%

Publication

86

Fataneh Hashempour-baltork, Behrooz Jannat, Behrouz Tajdar-oranj, Majid Aminzare et al. "A comprehensive systematic review and health risk assessment of potentially toxic element intakes via fish consumption in Iran", Ecotoxicology and Environmental Safety, 2023 Publication

<1%

87

Vikas Pandey, Zeba Usmani, Avantika Chandra, Rohit Kumar Mishra, Vipin Kumar. "Environmental impact of leaching of trace elements from fly ash dumps on aquatic ecosystems", Chemistry and Ecology, 2017 Publication <1%

Exclude quotes Off
Exclude bibliography On

Exclude matches

< 7 words