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ARTICLEINFO ABSTRACT

Keywords: Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the
Mesenchymal stem cells {MSCs) world. Wound healing is a complex and multi-step process, the speed and guality of which can be changed by
Wound healing various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet
i‘;’:;;ld lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are
Hydrogel suggested. Nowadays, the use of MSCs has attracted alot of attention. These cells can induce their effect by direct

Cell therapy effect and secretion of exosomes, On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions
for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating
suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these
cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In
addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and
poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound
healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application
with MSCs therapy to favor wound healing.

1. Introduction and impose very heavy costs on the treatment system [1,2]. Wound
healing is a complex and multi-step process, which, creating changes at
Non-healing wounds affect a large population in the world annually any stage can make the wound healing longer or shorter and the amount
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of scar remains from the wound [1,2]. Failure to heal the wound and the
remaining scar from the wound can cause a lot of problems for the pa-
tient and cause mental illness and a lack of confidence for the patient
[1]. Various methods are used in the treatment of wounds, and each of
these methods has advantages and disadvantages and only some of them
have enough effectiveness [3-5]. The different dressing is used to create
asuitable environment for wound healing. These dry dressings can delay
the healing of the wound and cause necrosis. The use of scaffolds,
hydrogels, and cell-matrix because of their properties is capable of
promoting wound healing in patients. The structure of these compounds
can be changed according to the need and is suitable for wound healing
and regeneration and cell growth, proliferation, differentiation, and
migration [6-8]. In addition, to enhance function and efficiency, these
compounds can also be combined with substances such as polyethylene
glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol,
and poly (vinyl) aleohol (PVA) [9-14].

Nowadays, the use of stem cells in the treatment of wounds and
regenerative medicine has been considered. Mesenchymal stem cells
(MSCs) are separated from different sources and can enhance wound
healing and reduce scarring with the properties of immunomodulation
and secretion of exosomes and vesicles [2,15]. The wound environment
can interfere with the growth, proliferation, and survival of stem cells
[6.16]. Therefore, to increase survival and to create the appropriate
conditions for the growth, reproduction, and differentiation of these
cells, Scaffolds, hydrogels, and various compounds are used [16.,17].
According to their structure, these compounds can provide a suitable
environment for the survival and growth of cells and increase the
function, efficiency, secretion of compounds, and migration of MSCs.
The combination of MSCs with scaffold, hydrogel, and matrix along with
other compounds can increase the performance of MSCs [9,11,18]. On
the other hand, biomaterials with a direct effect on the wound envi-
ronment can promote wound healing [6.16,17]. In this study, we intend
to investigate the effect of using scaffolds, hydrogels, and matrix along
with MSCs in wound healing.

2. Wound healing

When a wound occurs in the body, a complex and multi-step process
begins to repair this wound. Wound healing takes time and various
conditions can change the healing process and speed of wound healing.
If the conditions created for wound healing are suitable, it can shorten
the healing time and reduce the amount of scarring and if the wound
healing conditions are not suitable, it can make the wound healing time
longer and the wound scar more. Factors causing inflammation at the
injury site such as malignancy, old age, smoking, infections, oxidative
stress factors, and some drugs are among the factors that prolong wound
healing [19-22]. Among the factors that promote wound healing, we
can mention the reduction of inflammation, an increase in growth fac-
tor, and a proper environment for the growth, proliferation, differenti-
ation, and migration of cells to the injury site. Among the compounds
that provide these conditions for cells and wounds, we can mention
platelet-rich plasma, platelet lysate, autologous conditioned serum,
scaffolds, hydrogels, matrix, cell therapy with various types of cells,
especially MSCs [6,16,17,23-26]. Wound healing has three stages: He-
mostasis and Inflammation, Proliferative Phase, and Maturation and
Remodeling, and the mentioned compounds and cells accelerate these
stages by creating suitable conditions.

2.1. Inflammatory phase

After creating a wound, the body reacts quickly and wound healing
enters the inflammatory phase, which takes between 4 and 6 days. In
this phase, first hemostasis and then inflammation occurs. In hemostasis,
platelets come to the injured site and the coagulation cascade is acti-
vated. Various compounds such as fibrin, thrombin, growth factors, and
cytokines are released at this stage [27]. Then the inflammation starts,
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which causes the destruction of bacteria and prevents infection when
neutrophils enter the injury site. Monocytes and macrophages play an
important role in the injury site and play a role in the transition from the
inflammatory phase to the proliferative phase. Different types of growth
factors and cytokines including epidermal growth factor (EGF), fibro-
blast growth factor (FGF), interferons (IFN), interleukin (IL), keratino-
cyte growth factor (KGF), platelet-derived growth factor (PDGF),
transforming growth factor (TGF), thromboxane A2 (TXA2), and tumor
necrosis factor (TNF) are released at the site of damage from platelet
cells, endothelial cells, macrophages, lymphocytes, mast cells, kerati-
nocytes, and fibroblasts. These compounds play a very important role in
wound healing [258].

2.2, Proliferative phase

After passing through the inflammatory phase, the wound-healing
process enters the proliferative phase. This phase occurs 4-14 days
after creating a wound and encloses the stages of epithelialization,
angiogenesis, granulation tissue formation, and collagen deposition.
Epithelialization occurs with the migration and proliferation of epithe-
lial progenitor cells to the injury site. Then angiogenesis occurs by
endothelial cells and capillaries. Finally, with granulation and tissue
deposition, a barrier is formed to prevent fluid leakage and infection.
This phase is also highly dependent on cell secretions and a suitable
environment for wound healing, which MSCs and biocactive materials
can improve these conditions to a great extent [15,29,30].

2.3. Mawration and remodeling phase

From the 8th day, the wound enters the Maturation and Remodeling
phase and it can last up to a year after the wound. This step is very
important in wound healing, and if it is not done well, the wound will
not have the necessary strength and integrity. Collagen deposition oc-
curs at this stage, although if this is done more than usual, it can cause
scarring and keloid in the injured area [19,28].

The mentioned steps for wound healing are not simple and it is a
complex process that can have many changes according to conditions
and factors. The treatments are used to accelerate and increase the
quality of the wound-healing process. MSCs change these stages with
their secretions, and scaffolds, hydrogels, and cell-matrix create suitable
conditions, by improving the proliferation, differentiation, homing, and
secretion of MSCs, they create moisture and suitable conditions to
accelerate and improve wound healing stages. The use of compounds
such as polyethylene glycol (PEG), sodium alginate/collagen hydrogel,
chitosan, peptide, timolol, and PVA [9-14]. Along with the mentioned
items can create a more appropriate combined treatment in wound
healing.

3. Mesenchymal stem cells (MSCs)

MSCs are multipotent cells that can regenerate tissue in vitro and in
vivo. Studies have shown the efficiency of these cells in the regeneration
of different tissues such as the heart, bone, nervous system, and skin
[31]. MSCs can be used systemically and locally. If used systematically,
these cells can migrate to the desired location, although studies have
shown that only a small number of these cells reach the desired location
and a large part of them accumulates in the kidney and lung [32,33]. On
the other hand, if these cells are used as a local injection, a large number
of them remain in place and only a small amount of these cells enter the
bloodstream [33,34]. Different biomaterials such as scaffolds, hydrogel,
and matrix can be used to increase the survival of cells at the site of
injury as well as to increase the growth, proliferation, and survival of
cells. In studies, fibrin spray has been utilized to repair skin wounds, and
scaffolds have been used to treat ischemia of heart tissue and diabetic
wounds [35-38]. MSCs cells can promote wound healing and tissue
regeneration by releasing growth factors and cytokines [39]. MSCs by
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modulating the regeneration environment can cause changes in wound
healing stages and effective factors in this process such as tissue
remodeling, immunomodulation, angiogenesis, and cell homing [40].
Therefore, instead of skin grafting, these cells can be used to promote
wound healing and regeneration. MSCs can be isolated from different
tissues such as bone marrow, adipose tissue, Wharton jelly, umbilical
cord blood, and peripheral blood, and used for regeneration, although
cells isolated from each tissue have advantages and disadvantages [41,
42]. Cells isolated from adipose tissue do not change with the age of the
donor, they can be used autonomously in elderly people, there are a
large number of these cells in a small volume of adipose tissue, and it
does not cause an immune reaction, and does not cause graft versus host
disease (GvHD). Immaturity of isolated cells and no need for human
leukocyte antigen (HLA) compatibility are the advantages of using stem
cells with cord blood and Wharton's jelly and the small number of iso-
lated cells and the need for cell culture to increase the number of these
cells with the risk of causing changes in the cells are the disadvantages of
MSCs with these sources [43]. MSCs derived from bone marrow are
another widely used source. Ease ofisolation and a large number of cells
are the advantages of MSCs isolated from bone marrow and the maturity
of the isolated cells and the possibility of causing GvHD is its disad-
vantage [41,43]. Although, mesenchymal stem cells isolated from adi-
pose tissue source show higher immunomodulatory ability than stem
cells isolated from bone marrow [44 |. The immunomodulatory property
of MSCs is related to the direct contact with the target cell and the
secretion of various factors in a paracrine manner [45].

In vitro studies have shown that MSCs co-culture with activated
lymphocytes can induce IL17-expressing lymphocytes, and co-culture of
these cells with CD4 + lymphocytes can increase the expression of
Notchl/forkhead box P3 (FOXP3) pathway and increase the percentage
of CD4 cells. +CD25 FOXP3+ [46.47]. On the other hand, MSCs play a
role in the activity of nuclear factor kappaB (NF-«B) by expressing
Toll-like receptors (TLRs) 3 and 4 and can contribute to the response of T
cells in cellular infections [48]. Human placenta MSCs (PMSCs) by
expressing a high amount of programmed-death ligand 1 (PD-L1) and
PD-L2 inhibit the proliferation of T cells and inhibit the cell cycle [49].
MSCs can inhibit natural killer (NK) cells. By increasing
IL-12/1L-18-stimulated NK, MSCs increase [FN-y from these cells and
thus increase defense against infections at the site of injury and wound
and increase tissue repair [50,51|. Compounds secreted from MSCs such
as IL-6 inhibit the differentiation of monocytes towards the
anti-inflammatory phenotype, and the production of prostaglandin E2
(PGEZ2) from MSCs causes the differentiation of monocytes into dendritic
cells [52,53]. MSCs by secreting IL-10, IL-1p, IL-12, and Macrophage
inflammatory protein-1 alpha (MIP-1a) as well as glucocorticoid and
progesterone receptors and downregulation of IL-23 and [L-22 cause the
differentiation of inflammatory macrophages M1 to anti-inflammatory
macrophages M2 [54,55]. By reducing the possibility of infection and
increasing the anti-inflammatory properties of the immune system, all
the mentioned cases can create the conditions for wound healing and
tissue repair [28.45]. Increasing angiogenesis is one of the other
mechanisms that play a role in the effectiveness of MSCs in wound
healing [56.57]. Studies have shown that MSCs can increase angiogen-
esis and increase the proliferation of epidermal stem cells (EPSCs) by
increasing the expression of VEGF, p-STAT3, and SDF-1, as well as
modulating the Notch signaling pathway, and thus promote better
wound healing [56.57]. Various studies have used MSCs along with
scaffold, hydrogel, and matrix for dermal regeneration. The results of
these studies have shown an increase in the survival and function of
seeded cells in biomaterial compounds at the wound site [16].

4. Combination therapy with biomaterials and MSCs
Using dry dressings can dehydrate the wound environment and cause

necrosis, as a result, the compounds used should have softness, moisture,
and proper absorption to be able to create a suitable microenvironment
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for tissue repair at the site of injury, a suitable environment for cells and
release effective compounds in wound healing and prevent microbial
contamination and infection in the injured area |58 |. The advantages of
using biomaterials are listed in Table 1. Recently, several compounds are
used for better wound healing and increasing the function of cells used
in wound healing. The compounds used are bioabsorbable and
non-bioabsorbable and these compounds are used with or without cells
at the site of injury [ 5,58]. Among the compounds used, we can refer to
polyethylene glycol, sodium alginate/collagen hydrogel, chitosan,
peptide, timolol, and PVA [9-14 |. These compounds together with MSCs
increase the proliferation, migration, and differentiation of MSCs and
promote wound healing. The method of using and functioning of MSCs
and biomaterials is shown in Fig. 1.

4.1. Scaffold

Various biosynthetic scaffolds have been used to improve wound
healing. These scaffolds have been used together with cells or alone for
wound healing. Various studies have suggested the use of seeded cells
along with scaffolds. The combination of these scaffolds with MSCs has
shown a suitable effect on wound healing [16,24]. Used scaffolds can
support wound healing and also provide repair conditions for used cells
[16].

Silk fibril is a natural protein that is effective among other scaffolds
and has many advantages such as low immunogenicity, non-toxicity, its
similarity to natural extracellular matrix (ECM) due to its morphology
and architecture and dynamic changes during the destruction of nano-
fibrils, it is a suitable compound for the proliferation and production of
ECM in seeded cells [24,59 |. Studies have shown that the use of scaffolds
with pores of 20-125 micrometers can support skin regeneration, pro-
liferation, adhesion, differentiation, and cell migration [17,60,61].
Millan-Rivero et al. [62] study showed that the use of Silk fibroin scaf-
folds along with Wharton jelly MSCs can be effective in the formation of
dermis fibroblasts, neuroxemia, reduction of inflammation and regen-
eration of inflammation in the wound site.

The study by Wahl et al. [16] used different types of scaffolds to
improve the performance of MSCs in vitro. The use of scaffolds was able
to cause attachment, survival, seeding efficiency, metabolic activity,
cellular distribution, paracrine release, and better angiogenesis at the
injury site. To increase the efficiency of scaffolds, synthetic compounds
such as sodium carboxymethylcellulose are used, which show sufficient
protection for skin wound healing in Thickens burn wounds [63].

Sodium carboxymethylcellulose is a synthetic compound that is
formed from the hydration of cellulose with sodium hydroxide and from

Table 1
Advantages of using matrix, scaffold, and hydrogel.

Biomimetic environment for cells

Creating a suitable environment for the growth and proliferation of cells

Helping the migration of cells and the survival of more cells at the site of injury

Increase secretion of cellular compounds

Can be used with different types of cells

Structural features

Having elasticity and stiffness similar to skin

Making structural changes appropriate to the wound and the wound environment

Creating changes in biological, chemical, and stiffness conditions

Simultaneous use with other compounds to increase performance

Wound regeneration

Creating a suitable environment for wound healing

Creating a suitable cover for the bottom surface

Maintaining the humidity of the environment and preventing the formation of tissue
necrosis

Preventing wound contraction and creating hypertrophic scars

Immunogenicity

Use without inflammatory responses

Reducing the inflammation in the wound environment

Stability and durability

Possibility of one-time use and no need for continuous replacement
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Fig. 1. Method of using and functioning uf;mchymal stem cells (MSCs) and biomaterials. Mesenchymal stem cells in combination with biomaterials can be
used at the site of injury to elicit more favored outcome. Biomaterials provide conditions for wound healing by creating suitable conditions for cell growth, pro-
liferation, and differentiation.

an alkaline pulp-catalyzed reaction with chloroacetic acid. In addition to adipose-derived stem cells (ADSCs) with sodium carboxymethylcellu-
protecting external bacteria in the wound, this compound has a very lose scaffold in a mouse wound model. The results of this study showed
suitable ability to absorb and transfer liquids. However, the toxic effects that the combination of sodium carboxymethylcellulose with MSCs has
of this compound on the body are still not well known [11]. B; study, no effect on membrane viability and can have genotoxicity in high doses.
Rodrigues et al. [11] investigated the efficacy of combining This combination has increased cell proliferation, epithelium thickness,

Table 2
Studies conducted on the combined of hymal stem cells (MSCs) and scaffold in wound healing.
Type of wound Cell source Animal Type of  Material used Outcome Ref.
study
Full thickness Human A- Mouse In vivo Silk fibroin scaffold Maintaining MSCs adherence, [24]
wound MSCs proliferation, and differentiation
Decreasing wound area and improving
tissue regeneration
Increasing angiogenesis gene expression
Full thickness Bat A-MSCs  Rat In vive Sodium carboxymethyleellulose scaffold Increasing the rate of cell proliferation [11]
wound Increasing the tissue granulation and
epithelium thickness
Diabetic wound Mice BM- Diabetic In vive 3D scaffold Enhancing the formation of granulation [118]
MSCs mice tissue,
Promoting angiogenesis, and facilitating
collagen deposition
Decreasing M1-type macrophage
formation and expression of pro-
inflammatory cytokines (IL-6 and TNF-a)
Promoting M2-type macrophage and anti-
inflammatory cytokines (IL-4 and IL-10)
- Human - In vivo BioPiel (chitosan film), Smart Matrix (fibrin matrix), Increasing cellular distribution, [16]
Adipose Integra DRT (collagenglycosamin glycan matrix), and attachment, survival, metabolic activity,
MSCs Strattice (decellularized dermis) and paracrine release
Human Wj- Mouse In vive Silk fibroin scaffolds Yielding neoangiogenesis [62]
Full- MSCs Decreasing
thicknessWound Inflammatory cell infiltration
Increasing myofibroblast proliferation
Facilitating epidermal regeneration
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and tissue granulation, although, it did not affect collagen fiber and
wound closure. This study showed that this compound can be used in
lower concentrations as a safe compound for MSCs in wound healing.
decellularized scaffold can be a suitable combination in wound healing
due to its ability to mimic ECM. Navone et al. [24] used decellularized
silk fibril scaffold combination with MSCs in wound healing and showed
that this combination can increase cell growth, proliferation, and
adhesion and improve wound healing. The studies conducted on scaf-
folds and the results of these studies are summarized in Table 2.

4.2. Hydrogel

In recent years, the use of hydrogels has gained attention due to their
easy use, ability to encapsulate and seed cells in it, non-invasiveness,
adaptability to the patient’s body, ability to change shape, and easy
molding [64-66]. Hydrogel compounds such as alginate, collagen, hy-
aluronic acid, chitosan, and gelatin are natural or synthetically prepared
such as poly (ethylene glycol), poly (lactide-co-glycolide) poly-
acrylamide. Each of these compounds has advantages and disadvan-
tages. Natural compounds have properties similar to ECM and are
routinely used in regenerative medicine and tissue engineering.
Although, these compounds have disadvantages such as the high cost of
preparation, the heterogeneity of the structure, and the instability of
these compounds. Synthetic hydrogels have both advantages and dis-
advantages. Among the advantages, their tenability, reproducibility,
and the ability to design for specific purposes are the advantages of
synthetic hydrogels and its toxicity for the host's body, the
non-biological nature of the compounds, the insufficient mechanical
properties, and less similarity to ECM are its disadvantages. Hydrogels
can play a role in increasing cell growth, bone formation, and vascular
anastomosis, and can be used to encapsulate cells and drug carriers [67,
68]. The studies conducted on hydrogel and the results of these studies
are summarized in Table 3.

4.2.1. Fibrin

Fibrin is a compound that is naturally used as a scaffold for endo-
thelial cells and leukocytes in tissue regeneration [69,70]. The use of
fibrin has been able to solve the problems of infection in the injured area
to some extent [71]. The advantages of fibrin are the possibility of
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designing and adjusting bulk stiffness gel, its degradability, and porosity
for the proliferation and secretion of MSCs [72-75]. Compared to
collagen which is found in mature tissues, fibrin gel can stimulate the
release of repair factors and extracellular matrix to stimulate tissue
repair [76].

The use of fibrin with its advantages has been able to solve some of
the problems of dry dressings and prevent infection. In addition, with
the changes that have been made in fibrin hydrogels, its use has been
made easier and its properties have been improved. However, fibrin
hydrogels still have problems such as relatively rapid shrinkage, low
mechanical stiffness (which limits durability), and rapid degradation
after placement in the wound site. To reduce these problems, fibrin
hydrogels can be used with other compounds. The use of polyethylene
glycol (PEGylated fibrin hydrogel) creates a highly hydrated hydrogel
microenvironment by creating additional cross-linking between fibrin
polyethylene glycol (PEGylated) (FPEG) during thrombin-mediated
polymerization of fibrin, Which, provides the possibility of cell seed-
ing in the matrix and causes the formation of blood vessels both in vitro
and in vivo [77-79].

4.2.2. Silver sulfadiazine

Various compounds are used to control bacterial infection. Topical
silver sulfadiazine (S5D) is one of these compounds, which, has a wide
range of activity against Gram-positive and Gram-negative bacteria as
well as fungal infections [80-582]. SSD interferes with the structure of
enzymes by binding to the thiol group and ionizing with bacterial DNA.
However, the frequent use of this combination, in addition to the need
for multiple uses and continuous bandaging of the wound, brings the
possibility of silver poisoning. The simultaneous use of this compound
with hydrogels can control the release of this compound at the site of
injury. The combination of antibacterial SSD and the natural biological
activity of fibrin improves the regeneration of tissue and blood vesselsin
the wound [79,83].

Gil et al. [84] investigated wound healing and the antimicrobial ef-
fect of FPEG-based wound dressing for the controlled delivery of SSD
entrapped in chitosan microspheres (CSM) (SSD-CSM-FPEG) on wounds
with Pseudomonas aeruginosa infection. The result of this study showed
the effectiveness of this combination in better wound healing and
eliminating infection. However, no study has been done on the

Table 3
Studies conducted on the combined treatments of mesenchymal stem cells (MSCs) and hydrogel in wound healing.
Type of wound Cell source Animal Type of Material used Outcome Ref.
study
Full thickness Human ADSCs Mice In vivo Catechol-functionalized hyaluronic Increasing wound closure, epidermis regeneration, and [102]
wound acid skin thickness
Increasing VEGF, IGF-1, FGF-2, ANG-1, PIK, and AKT
expression
- Human bone In vitro RGD-containing hydrogels Promoting wound healing 951
marrow LLP2ZA-tethered hydrogels
Full thickness Rat ADSCs Diabetic In vivo Pluronic F-127 Accelerating wound closure and re-epithelialization [98]
wound rat Increasing expression of CD31, Ki67, VEGF, TGF-i
Full thickness Human UCMSC-  Diabetic In vivo Pluronic F-127 Accelerating wound closure and re-epithelialization [68]
wound X0 rat
Full thickness Human Rat In vivo Thermo-sensitive chitosan-based Accelerating wound closure, microcirculation, tissue [12]
wound UCMSCs hydrogel remodeling, re-epithelialization, hair follicle
regeneration
Promoting collagen deposition and keratinocyte
mature marker K1 expression
Decreasing inflammatory factors secretion (TNF-u and
L-1p
Full thickness Human mice In vivo Sodium alginate/ collagen Promoting the formation of granulation [14]
wound UC-MSCs Enhancing collagen deposition
Increasing VEGF and TGF-fil expression
Reducing the production of TNF-u and IL-1jp and higher
release of IL-4 and IL-10
Diabetic wound ADSCs Diabetic In vivo Hyperbranched multi-acrylated poly Accelerating diabetic wound healing process by [13]
Rat (ethylene glycol) inhibiting inflammation

Macromers (HP-PEGs)

Promoting angiogenesis and re-epithelialization
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combination of these compounds with MSCs in wound healing to
investigate its greater antibacterial effectiveness in wounds.

4.2.3. Poly (ethylene glycol)

PEG is one of the hydrogels with a biocompatible structure that is
used in cell culture and tissue engineering scaffolds. PEG has been used
in various studies to induce changes and improve function in various
cells. Noiri et al. [85] have used PEG to modify the structure of MSCs to
attach to endothelium surfaces. In another study, Xu et al. [13] used
hyperbranched PEG to improve the function of adipose tissue-derived
stem cells. The results showed that these cells have stemness proper-
ties, promote adipose tissue-derived stem cell secretions, and promote
wound healing in animal model wounds. Lee et al. study [10] on the
effect of poly (ethylene glycol-b-[oi-lactic acid-co-glycolic acid]-b--
ethylene glycol) on muscle-derived stem cells showed the effectiveness
of this combination and increased wound healing, wound closure,
epithelium migration, and collagen deposition in the wound of diabetic
mice. The use of PEG in combination with MSCs in wound healing needs
more studies to determine its appropriate efficacy and non-toxicity.

4.2.4. Sodium alginate/collagen hydrogel

Collagen is the most abundant protein in the human body and
mammals, which is widely used in tissue engineering and scaffolding
due to its effects on cell growth and proliferation [14,56]. Collagen is
divided into two fibrillar types including type I, II, and III collagen, and
non-fibrillar type collagen type IV and collagen-like protein. Fibrillar
collagen with its properties such as high tensile strength, biocompati-
bility, biodegradability, availability, and stability has found a suitable
application in tissue engineering and wound healing [86-88]. Sodium
alginate (SA) is a compound obtained from brown algae. This compound
has a polysaccharide structure and is used in wound healing with
hydrogel and scaffold due to its properties of high hydrophilicity,
excellent biocompatibility, high hydrophilicity, and hemostatic capa-
bilities [14.89]. In an in vitro study, Zhou et al. [18] showed the
effectiveness of sodium alginate and collagen in preventing MSCs
apoptosis. In another study, Zhang et al. [14] used sodium alginate/-
collagen hydrogel together with UC-MSCs in wound healing, and their
results showed the effectiveness of this combination in wound healing,
collagen deposition, increased angiogenesis, and reduced inflammation
at the wound site.

4.2.5. Chitosan-based hydrogel

Among the appropriate cell and drug carriers, chitosan/sodium
glycerol phosphate (CS/GP) based hydrogels can be mentioned, which
POgood biodegradability and biocompatibility [90,91]. CS/GP has a
unique heat-sensitive effect that makes it suitable for injectable hydro-
gels. With all the mentioned advantages, this composition has disad-
vantages such as poor mechanical properties, and insufficient
deformation rate, which needs to be improved [90,91]. This goal is
possible by adding compounds such as collagen, graphene, and nano-
crystal cellulose [92,93]. The use of modified compounds in combina-
tion with MSCs can be effective in accelerating wound healing [12]. Xu
et al. [12] showed in their study that the use of thermo-sensitive chi-
tosan-based hydrogel encapsulated hUC-MSCs can lead to better wound
healing, wound closure, re-epithelialization, and reduction of inflam-
mation at the wound site.

4.2.6. Pluronic F-127

Pluronic F-127 (PF-127) is a unique, synthetic, hydrogel bio-
compilation and heat-sensitive (at low temperatures in liquid and high
temperatures in semi-solid gel), which is also known as Poloxamer 407,
and its use has been approved by the FDA [94,95]. The thermal prop-
erties of PF-127 make it a suitable compound in the wound environment
to be able to perform properly in this environment, can adhere to the
target site, and exert its biological function with bioactive compounds
[68.94]. The function and structure of this compound can prolong the
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release time of therapeutic proteins and increase the half-life of the drug
and serum. In addition, PF-127 can absorb secretions from the surface of
the wound and has a mild inflammatory effect, which can help maintain
moisture and promote wound healing [96,97]. All the mentioned
properties make PF-127 a suitable compound for increasing the per-
formance and effectiveness of MSCs and MSC-EXO. Studies have shown
that the use of MSC-EXO in combination with PF-127 can increase
wound closure, and tissue regeneration, and increase the expression of
genes and growth factors related to angiogenesis in the injury site [65].
In addition, in another study conducted by Lin et al. [98] on the effec-
tiveness of ADSCs in combination with PF-127, similar results were
obtained, which showed the efficiency and performance of PF-127 in
increasing the function of cells and exosomes secreted from it in wound
healing.

4.2.7. Peptide

Various peptides are used to increase the growth and proliferation of
MSCs and wound healing. The peptide with the amino acid sequence
arginine-glycine-aspartic acid (RGD) is one of the most widely used
amino acid sequences, which bind to aVp3 and o5p1 integrins, which are
related to fibronectin, vitronectin, and ECM proteins, cause the differ-
entiation of stem cells and changes in the extracellular signal [99,100].
b~ and L-enantiomers of Cys-Ala-Gly (CAG) a tripeptide that can cause
changes in the proliferation, mechanical properties, and wound healing
of MSCs [99]. CAG is another tripeptide derived from collagen type IV
and can promote the growth, adhesion, and proliferation of endothelial
cells and wound healing | 100]. Studies have shown that the use of these
compounds in combination with hydrogels can promote the differenti-
ation and adhesion of MSCs, smooth muscle cells, and endothelial cells
along with changes in ECM proteins, which can improve wound healing
[99,100].

4.2.8. Hyaluronic acid

Hyaluronic acid is a polysaccharide compound that plays a role in
wound healing, cell proliferation, differentiation, migration, and ECM
organization and metabolism. Hyaluronic acid is found in various tissues
such as skin, eyes, cartilage, and joints [101,102].

Hyaluronic acids with high molecular weight can prevent cell
migration and proliferation, although hyaluronic acids with low mo-
lecular weight, especially 150-250 kD, can promote wound healing by
supporting cell proliferation, cell migration, and angiogenesis [103,
104]. Hyaluronic acid has biocompatibility, matrix structure similarity,
and drug delivery capabilities, which has led to the wide use of this
compound for biomedical and pharmaceutical applications [26]. To
increase the performance and increase reversibility of hyaluronic acid,
changes have been made in it so that it can promote wound healing and
improve the performance of the cells that are used in combination. In the
study of Eke et al. [105], by using 40 s of UV rays, they created a
crosslink between methacrylated gelatin (GelMA) and methacrylated
hyaluronic acid (HAMA) and increased the performance of the hydrogel
and prolonged the reversibility of this compound and the better per-
formance of ADSCs. The study of Pak et al. [102] also showed that
Catechol-modified hyaluronic acid (HA-CA) hydrogel, in addition to
better biocompatibility and tissue adhesion, causes better survival and
performance of stem cells than hyaluronic acid hydrogel. These studies
showed that hydrogel alone and in combination with different materials
and improving the performance of hydrogel can promote wound healing
and protect stem cells in wound healing.

4.3. Matrix

Matrix is composed of an insoluble scaffold such as collagen, fibro-
nectin, and elastin. These matrices increase cell growth, proliferation,
and migration by maintaining cell signals, cytokines, and growth factors
[106]. If these biological compounds are natural substances, there is a
risk of disease transmission and immunogenicity, although the use of
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processing methods can eliminate some of these diseases, they are still
not completely effective. One of the ways to reduce the risk of disease
transmission is the use of acellular matrix [107]. The use of acellular
dermal matrix (ADM) in wound healing, healing damaged tissue,
regenerating epidermis, revascularization, and improving the function
and survival of the cells used in the damaged area [ 108]. The use of ADM
can improve the performance of MSCs and can promote reepitheliali-
zation, and facilitate angiogenesis and skin regeneration in deep
extensive bums and full-thickness skin wounds [3,109].

Studies have shown that the use of a dermal matrix for the carrier of
ADSCs can increase survival, and differentiation and promote wound
healing [110]. In Qi et al. study [25], MSCs seeded in ADM were used for
wound repair, which in addition to the survival of MSCs, increased
angiogenesis, re-epithelialization, and wound regeneration. The studies
conducted on matrix and the results of these studies are summarized in
Table 4.

4.3.1. Timolol

Timolol is one of the drugs used to heal skin wounds. Timolol alone
or in combination with other compounds has been used in several
studies for wound healing [111]. Wound tissue can produce catechol-
amines, which inhibit wound epithelialization, keratinocyte migration,
fibroblast phenotype change, increased neutrophils at the injury site,
and as a result, increases inflammation and inflammatory cytokines at
the wound site [4,112]. Timolo, as a beta-adrenergic antagonist, helps
wound healing by inhibiting the effects of catecholamines, induces the
secretion of IL-6 by MSCs, and repeals the effects of epinephrine and
bacterial TLR activators [4,113]. Yang et al. 4] used the combination of
dermal matrix, human MSCs, and timolol in the treatment of diabetic rat
wounds, and the results of the study showed a reduction in inflammation
at the wound site and promotion of wound healing. In another study, the
use of dermal matrix, human MSCs, and timolol in porcine wounds
showed the promotion of wound healing and the lack of immunogenicity
of human MSCs in porcine [114].

4.3.2. Polyvinyl alcohol

Polymers are widely used in tissue engineering due to their me-
chanical and physical properties and the ability to make required
changes in their composition and structure. Polyvinyl alcohol (PVA) isa
synthetic polymer that is used in regeneration studies and soft tissue
replacement due to its porous structure, tannable properties, high water
content, and biocompatibility [115,116]. Studies have shown that the
use of pure PVA has little effect on wound healing, this PVA is combined
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with various drugs and growth factors to increase its performance and
efficiency [9.117]. In a study, Ha et al. [9] investigated the effect of
combining PVA with human fibroblast-derived matrix and MSCs as an
engineered ECM patch on a mouse full-thickness wound model. The
results of the study showed, in addition to increasing cell growth, pro-
liferation, and migration, promoting wound healing, collagen deposi-
tion, and neovascularization. The used engineered ECM patch can
provide special conditions for wound healing with its regenerative
properties.

5. Conclusion

In this study, the studies conducted on the combination therapy of
scaffolds, matrix, and hydrogels with MSCs were reviewed. Scaffolds,
matrices, and hydrogels are biomaterials that increase the growth,
proliferation, and differentiation of cells by providing moisture and
suitable conditions, as a result of increasing wound healing and reducing
scars. MSCs, with their functions and secretions, cause wound healing.
Studies have shown that the combination therapy of biomaterials with
MSCs, in addition to increasing the proliferation, differentiation, and
homing of these cells, promotes wound healing and lowers scars. Using
other compounds such as glycol, sodium alginate/collagen hydrogel,
chitosan, peptide, timolol, and PVA along with these treatments can also
be effective. Although the compounds used are different and the studies
conducted on each of these combinations are few, hence there is a need
for more studies to investigate the sufficient effectiveness and side ef-
fects of these compounds.
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wound MSCs Supporting angiogenesis
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