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The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteo-
genesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA,
circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA,
is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of
circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs

expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of

circRNAs in osteogenesis might help the diagnosis as well as

of bone di such as bone defects and

osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.

1. Introduction

Bone is a dynamic hard tissue with a highly vascular texture. Bone
shapes the body, protects the internal organs, helps movement and
locomotion, acts as a reservoir of growth factors, and is involved in
hematopoiesis |1]. Therefore, any bone defects affect the quality of life
and impose heavy costs on the healthcare services [2]. Bone minerals
and the extracellular matrix (ECM) determine the physicomechanical
properties of the organ [3]. It is well-determined that collagen type [ is
the major component of the bone ECM accounting for up to 90% of total
tissue protein. Osteonectin, osteocalcin, osteopontin, fibronectin, and
sialoprotein are other non-collagenous bone ECM components. In
addition, polysaccharides also exist in bone ECM. Bone has a highly
mineralized ECM and contains inorganic materials such as hydroxyap-
atite (HA), amorphous calcium phosphate (ACP), and carbonated
apatite (CHA). Bone also consists of several bone-specific cells including
osteocytes, osteoblasts, osteoclasts as well as osteoprogenitors [4.5].
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Collagen I as a scaffold controls the mechanical structure of the bone
tissue and also promotes bone remodeling. Osteonectin and osteocalcin
are responsible for the formation and secretion of minerals such as HA
while osteocalcin controls the mineralization process and also promotes
bone remodeling. Bone minerals are responsible for bone rigidity and
enhance bone turnover. Osteoprogenitors are considered as a reservoir
to produce osteocytes and therefore are involved in bone maintenance.
Osteoblasts are involved in osteoid calcification while osteoclasts
regulate the balance between calcium and phosphate. The balance be-
tween osteoblasts and osteoclast is essential for the normal development
of bone [4.5].

During developmental stages, bone-specific cells are derived from
their progenitors including mesenchymal stem cells (MSCs) and he-
matopoietic stem cells (HSCs). MSCs differentiate into osteoprogenitor
cells which in turn differentiate into osteoblasts and mature and func-
tional osteocytes. HSCs are responsible for the generation of osteoclasts.
Osteogenesis includes the formation of bone tissue with functional
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properties from bone-specific cells through ECM production and bone
mineralization [6]. Osteogenesis occurs in three major phases including
(1) cell proliferation, (2) matrix maturation, and (3) matrix minerali-
zation. During osteoblast proliferation, procollagen [ and fibronectin are
highly expressed. In the matrix maturation phase, the expression of
alkaline phosphatase (ALP) increased. The expression of bone-specific
proteins including osteocalcin and osteopontin is the main character-
istic of matrix mineralization [7]. Microenvironmental signals such as
growth factors/inducers and extracellular matrix (ECM) play an essen-
tial role in osteogenesis. These growth factors are expressed in temporal
and spatial order enhancing the 3D growth of cells on the ECM context to
form new bone [6]. Transforming growth factor-pl (TGF-p1), insulin-
like growth factor 1 (IGF-1), fibroblast growth factor (FGF), and bone
morphogenetic proteins (BMPs) are among the most important factors
that are involved in bone development and formation [2]. It has been
shown that microRNAs (miRNAs, miRs) also have an important role in
osteopoiesis and osteogenesis [5]. Recently, it has been demonstrated
that a newly identified RNA, circular ENA, may have a role in osteo-
genesis [9]. In this review, we performed a literature search in PubMed/
MEDLINE, Web of Science, and Google Scholar databases using the
following keywords: “Circular RNA OR circRNA OR cRNA" AND
“Osteogenesis OR osteogenic differentiation” AND “Dental stem cells OR
DSCs”. The search was conducted by twe of the authors (first author and
corresponding author) independently up to 24 September 2022. The
relevant articles were classified based on the heading of this manuscript
and the manuscript writing was performed by the authors.

2. CircRNAs: Biogenesis and biological functions
2.1. The biogenesis of circRNAs

Several kinds of coding and non-RNAs have been identified in
eukaryotic cells. Many of them such as miRNAs and long non-coding
ENAs (IncRNAs) regulate the gene expression mostly at the transcript
level. A new identified RNA, circular RNA (circRNA), is also involved in
the regulation of gene expression. CircRNAs are single-stranded and
their ends covalently bind together to form a circular strand. Unlike
miRNAs, circRNAs have higher stability and half-life as they are circular
and resistant to exonucleases. Circular RNAs are usually generated by
alternate splicing mechanisms including back splicing, exon skipping,
and internal splicing during the processing and maturation of eukaryotic
messenger RNAs (mBNAs). In addition, some of the circRNAs are
derived from pre-tRNA transcripts during pre-tRNA processing. Based
on their paternal transcript sequences, circRNAs are classified as follows
(Fig. 1) (1) Exonic circRNAs (EcRNAs) derived from the exonic se-
quences of pre-mBNA transcripts, (2) Intronic circRNAs (ciRNAs)
derived from the intronic sequences of pre-mBNA transcripts, (3)
Exonic-intronic circRNAs (EIciRNAs) derived from both exonic and
intronic sequences of pre-mBNA transcripts, and (4) TricRNAs derived
from the sequences within pre-tRNA transcripts [ 10]. CircRNAs derived
from pre-mBNA transcripts are synthesized in a process called “back
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splicing”, a canonical altemative splicing. Back splicing recruits the
spliceosome machinery of a canonical splicing process which binds to
the sequences associated with 5' and 3' ends of circRNAs. The spliceo-
some machinery cleaves their target sites and covalently binds with 5'
and 3' ends to form circRNAs [11]. The biogenesis of tricRNAs relies on
the tRNA splicing endonuclease (TSEN) complex which cuts the bulge-
helix-bulge (BHB) motifs on pre-tRNA transcripts [ 12]. Several RNA
binding proteins (RBPs) have been identified to regulate the biogenesis
of circRNAs including Muscleblind (MBL) and Quaking facilitating
circularization [13,14], and adenosine deaminase negatively regulating
the circularization process [15]. While circRNAs have a circular struc-
ture, they are more stable than other RNAs. To degrade circRNAs, a
combination of 5' and 3' exonucleases, as well as endonucleases, are
required as endonucleases open the circular structure and exonucleases
further degrade the circRNA sequence [10].

2.2, The biological functions of circRNAs

CircRNAs are synthesized from pre-mRNA or pre-tRNA transcripts
and then localized in the nucleus or cytoplasm. CircRNAs have been
demonstrated to regulate gene expression from transcription to trans-
lation levels. CircRNAs mediate their function through different mech-
anisms: (1) They could regulate the expression of their parental genes in
the nucleus by enhancing polymerase Il elongation [16]. (2) On the
contrary, some circRNAs may suppress the expression of their parental
genes by recruiting the spliceosome machinery and promoting back
splicing [17]. (3) The most important function of circRNAs is sup-
pressing the function of miRNAs in a process called “miRNA sponge”.
During miRNA sponge, cytoplasmic circRNAs bind to their comple-
mentary sequences on miENAs and prevent their ability to bind to their
target sequences on mENAs [18]. (4) CircRNAs may also bind to and
change specific regulatory proteins, a process called “protein decoy”.
The secondary and tertiary structures of circRNAs as well as their se-
quences mediate circRNA-protein interaction in an appropriate cellular
location. The circRNA-protein interaction suppresses the normal phys-
iological function of the protein which is called protein decoy [19].
Specific circRNAs have binding sites for specific proteins which mediate
circRNA-protein interaction under specific circumstances and usually
alter gene expression [20]. (5) Some of the circRNAs could be translated
into small regulatory peptides. It is believed that these circRNAs include
an open reading frame (ORF), an intemal ribosome entry site (IRES),
and N6-methyladenosine (to induce the initiation of protein trans-
lation). Circ-ZNF609, circ-FBXW?7, and circSHPRH are among the well-
known protein-coding circRNAs. These small regulatory peptides have
various biological functions including regulating cellular function,
tumor inhibition, and translation of circRNAs; however the function of
many of these small proteins remains unclear [20,21 ]. (6) It is believed
that some circRNAs such as circ-Amotll and circ-Foxo3 function as a
scaffold to support a protein complex by facilitating protein localization
and function [20].

CircRNAs seem to play important roles in wvarious biological
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Fig. 1. The biogenesis of cireRNAs. EcRNAs: Exonic circRNAs; EIciRNAs: Exonic-intronic circRNAs; ciRNAs: pre-mRNA intronic circRNAs; tricRNAs: pre-tRNA

intronic circRNAs; TSEN: tRNA splicing endonuclease.
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functions including development, growth, proliferation, and differenti-
ation [22,23]. In addition, in various pathological diseases such as
cancers, the aberrant expression of circRNAs has been reported [24].
Recently, it has been identified that some of the circRNAs are involved in
osteogenesis [9] and their upregulation or downregulation may be
contributed to pathological disorders such as osteoporosis [25]. In the
following section, the functional role of circRNAs in osteogenesis has
been discussed.

3. CircRNAs during osteogenesis
3.1. Differential expression

Initial studies have demonstrated that circRNAs sequences are highly
conserved and their expression is specific to the developmental stage or
tissue/organ. Therefore, they could be used as a biomarker or thera-
peutic target. CircRNAs are involved in organ/tissue development such
as neural development and embryonic development. They are also
involved in the development of a variety of human diseases [26-28].
Many cellular activities have been thought to be mediated by circRNAs
as they are able to regulate gene expression at transcriptional, post-
transcriptional, and translational levels [10]. It is also shown that
circRNAs could regulate the osteogenic differentiation of stem cells
during bone development [9.25]. Some studies have explored the dif-
ferential expression of circRNAs during osteogenic differentiation of
stem cells.

Studies have revealed that circRNAs are differentially expressed
during osteogenic differentiation of non-human stem cells [29,30]. Af-
terward, researchers explored the differential expression of circRNAs
during osteogenesis. Kang et al have differentiated AD-MSCs into osteo-
like cells and evaluated the differential expression of circRNAs in AD-
MSCs and differentiated cells. Screening by microarray analysis has
indicated that 290 circRNAs are differentially expressed in which 171
circRNAs were upregulated and 119 circRNAs were downregulated. The
gPCR analysis confirmed at least 8 differentially expressed circRNAs
with up to 2-fold changes between AD-MSCs and differentiated cells
including has_circ_0001421, has_circ 0006618, has_circ_0002890and
has_circ 0005752 (upregulating circRNAs) and hsa _circ 0034528,
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hsa_circ_0002938, hsa_circ_0001766, and hsa_circ_0003251 (down-
regulating circRNAs). In silico functional analysis indicated that these
circRNAs mediate their osteogenesis functions through PI3K-Akt,
MAPE, and forkhead box O (FOXO) signaling pathways [31]. A study
by Li and coworkers showed the differential expression of 650 circRNAs
(333 upregulated and 317 downregulated) between stem cells from
apical papilla (SCAPs) and differentiated osteo-like cells. Among them,
circNFATC1 had an important role in the osteogenic differentiation of
stem cells by sponging miR-4483 [31]. Recently, Huang et al have drawn
a circRNA landscape during the adipogenic and osteogenic differentia-
tion of human MSCs. They revealed the differential expression of 1166
circRNAs with lineage-specific expression patterns [32].

3.2, The pathways

Several intercellular signaling pathways are involved in osteo-
genesis. Some of the circRNAs with inducing or inhibitory effects could
regulate these pathways. Table 1 shows circRNAs, the pathways, and the
mechanisms that experimentally have been proven to regulate the
osteogenesis process.

3.2.1. Wnt/f-catenin signaling pathway

The wnt/p-catenin signaling pathway has a crucial role in bone ho-
meostasis. In this pathway, the binding of the ligands to the Frizzled and
LRP5/6 receptors results in the activation and translocation of f-catenin
from the cytoplasm to the nucleus, where it binds to DNA-binding pro-
teins and regulate the expression of genes related to osteogenesis [33].
In vivo, the wnt/f-catenin signaling pathway has been reported to repair
bone defects [34], enhance bone healing capacity [35], stimulate the
expression of bone morphogenetic proteins (BMPs), and promote the
expression of alkaline phosphatase (ALP) and Runx2 [36,37].

Glycogen synthase kinase 3p (GSK-3p) negatively regulates the wnt/
p-catenin signaling pathway by phosphorylation and degradation of
p-catenin [38 |. miR-199 negatively regulates the GSK-3p expression and
therefore, induces osteogenesis [39]. CircIGSF11 has been shown to
sponge miR-199 and inhibit the osteogenic differentiation of stem cells
[40]. Dkk1 is an inhibitor of wnt/p-catenin pathway receptors. miR-107,
miR-335, and miR-210 downregulate Dkkl and promote the

Table 1
CircRNAs that regulate osteogenesis.
CircRNA Study Pathway Mechanism Reference
Hsa_circRNA_33287 In vitro osteogenic differentiation of MSMSCs Wt/ fcatenin pathway Hsa_circRNA_33287/miR-214-3p/ [44]
Runx3 axis
CircRNA124534 In vitro and in vivo osteoblastic differentiation  What/f-catenin pathway CircRNA124534,/miR-496/-Catenin [82]
of PDLSCs
Circ_ 0067680 In vitro osteogenic differentiation of BM-MSCs ~ Wnt/f-catenin pathway Circ 0067680/miR-4429,/CTNNE1 [45]
axis
Circ FBLN1 In vitro osteogenic differentiation of BM-MSCs ~ Wnt/p-catenin pathway Circ FBLN1/let-7i-5p/FZD4 axis [94]
CiRS-7 In vitro osteoblastic differentiation of PDLSCs  P38-MAPK pathway CiRS-7/miR-7 /GDF5 axis 471
Hsa_circ 0066523 In vitro osteogenic differentiation of BM-MSCs  PI3/AKT signaling pathway Hsa_circ 0066523/KDMS5B,/PTEN [61]
Mm@ _circ 009056 In vitro ostengenesis of MC3T3 cells TGF-Ji signaling pathway Mm9_circ 009056,/miR-22-3p/BMP7 [55]

CircRNA FAT1 In vitro osteoblastic differentiation of PDLSCs  TGF-i signaling pathway CircRNA FAT1/miR-4781-3p/SMADS 53]
axis

Circ_0000020 In vitro ostengenic differentiation of primary TGF-Ji signaling pathway Circ 0000020/ miR-142-5p/BMP2 axis  [54]

EM-MSCs

CircRFWD2 In vitro ostengenic differentiation of DPSCs TGF-Ji signaling pathway circRFWD2/miR-6817-5p/BMPR2 [56]
axis

CircSIPAILL In vitro ostengenic differentiation of DPSCs TGF-Ji signaling pathway CircSIPAIL]/miR-617/Smad3 axis [85]

Circ_AFF4 In vitro osteogenic differentiation of BM-MSCs ~ TGF-Ji signaling pathway Circ_AFF4/miR-135a-5p/FNDCS axis [951]

Circ 0138959 In vitro ostengenic differentiation of PDLCs NF-kB signaling pathway Cire 0138959,/miR-495-3p,/ TRAF6 [59]
axis

Circ_00B7960 In vitro osteogenic differentiation of PDLSCs SKP2 ubiquitination-related pathway Circ 0087960, KDM5B/SKP2 axis [62]

Circ 0062582 In vitro osteogenic differentiation of BM-MSCs ~ CBFB-related osteogenic transeription factor Circ 0062582/ miR-145/CBFB axis [63]

stability pathway
Circ 0019693 In vitro osteogenic differentiation of BM-MSCs ~ PCP4-related caleium depaosition pathway Circ 0019693/miR-942-5p/ PCP4 [64]

MSMSCs: Maxillary sinus membrane stem cells; PDLCs: Periodontal ligament cells; PDLSCs: Periodontal ligament stem cells; BM-MSCs: Bone marrow-derived
mesenchymal stem cells; CBFB: Core-binding factor subunit [; DPSCs: Dental pulp stem cells; CTNNB1: catenin beta 1; PTEN: phosphatase and tensin homolog;

KDMSB: lysine demethylase 5B; FNDCS5: Fibronectin Type III Domain Containing 5).




A. Hjazi et al.

osteogenesis process by inducing the wnt/p-catenin signaling pathway
[41.42]. CircRNA436 has been shown to negatively regulate miR-107
and miR-335 [43]. Moreover, hsa_circ 0127781 also negatively regu-
lates miR-335 and miR-210 [40]. As these miRNAs are considered as
positive inducers of the wnt/p-catenin signaling pathway, circRNA436
and hsa_circ 0127781 could inhibit the osteogenesis process. The
expression of these circRN As decreases during osteogenic differentiation
of stem cells. Runt-related transcription factor 3 (Runx3) which is
regulated by Runx2, promotes osteogenesis by inducing wnt/f-catenin
pathway. Hsa_circRNA_33287 has been reported to target Runx3 and
inhibit the osteogenesis process through Hsa_circRNA_33287/miR-214-
3p/Runx3 axis [44]. Circ_0067680 has been also shown to induce
osteogenic differentiation of BM-MSCs through miR-4429/CTNNE1
axis. CTNNB1 (catenin beta 1) is a component of wnt/p-catenin
pathway [45]. Fig. 2 shows the regulation of wnt/p-catenin pathway by
circRNAs during osteogenesis.

3.2.2. Mitogen-activated protein kinases (MAPKs) signaling pathway

Mitogen-activated protein kinases (MAPKs) signaling pathway plays
a crucial role in osteogenic differentiation of stem cells and proliferation
of osteoblasts [46]. GDF5 is one of the mediators of the MAPKs pathway
which is closely related to p38-MAPK and its silencing has been reported
to suppress the osteogenic process. Circular RNA sponge for miR-7
(ciRS-7) which is antisense to the cerebellar degeneration-related pro-
tein 1 transcript (CDR1las) regulates osteogenesis by sponging miR-7.
While GDF5 mRNA is a target for miR-7, ciRS-7 could promote osteo-
genesis by suppressing miR-7 [47]. Several other circRNAs have been
reported to regulate osteogenesis through the MAPKs pathway. Bio-
informatic analysis has shown that circRNA BANP and circRNA ITCH
target miRNA34a and miRNAl46a respectively and regulate osteo-
genesis [45 |. However, the exact mechanisms of these circRNAs remain
unclear and need to be elucidated.

3.2.3. TGF+f signaling pathway signaling pathway
The TGF-p signaling pathway directs the expression of osteogenic-
related genes including runx2 and ostrix. Bone morphogenetic proteins
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(BMPs) are members of the transforming growth factor-p (TGF-p) su-
perfamily mediating their biological roles through Smads-dependent
and non-Smads-dependent pathways. BMP ligands bind to BMP re-
ceptors (BMPRI/BMPR2 complex) and activate R-Smad1/5/8 by phos-
phorylation to form a complex with co-Smad4. The activated complex
translocates into the nucleus to regulate the expression of several genes
including runx2 and ostrix. It has been shown that miENAs play an
important role in the regulation of the TGF-p pathway. For example,
miR-195 and miR-17 suppress smad-5 and smad-7 respectively, and
negatively regulate the pathway [49,50]. On contrary, miR-20a is
involved in the induction of the BMP pathway and upregulates the
expression of osteogenic-related genes [51]. Some circRNAs could sup-
press miRNA activity and regulate the TGF-p pathway. Bioinformatic
analysis that circ19142 and circ5846 suppress miR-7067 and induce the
TGF-p pathway to regulate osteoblast differentiation [52]. A study by Ye
et al demonstrated that circFAT1 positively regulates the osteoblastic
differentiation of periodontal ligament stem cells (PDLSCs) through
miR-4781-3p/SMADS axis [ 53]. Zhou and coworkers have reported that
circ_0000020 induces the osteogenic differentiation of primary BM-
MSCs by sponging miR-142-5p and subsequent upregulating of BMP2
[54]. CircRNA 33287 which suppresses miR-214-3p could induce
osteogenesis through the TGF-p pathway [44]. In addition,
mm9_circ 009056 could induce osteogenesis through the miR-22-39/
BMP7 axis [55]. CircRFWD2 also induced the osteogenic differentia-
tion of dental pulp stem cells (DPSCs) through miR-6817-5p/BMPR2
axis [56]. Therefore, circRNAs could modulate osteogenesis by regu-
lating TGF-p signaling pathway components.

3.2.4. NF-xB signaling pathway

Toll-like receptors (TLRs) are transmembrane glycoproteins that are
known as immune system components. However, they have also a reg-
ulatory role in inducing or inhibiting osteogenesis. TLR4 is considered as
a potent enhancer of bone resorption [57]. On contrary, TLR3 could
induce osteogenic differentiation of osteoblast possibly through the NF-
kB signaling pathway [58]. Bioinformatic analysis has shown that
circRNA3140 could induce the osteogenic differentiation of stem cells.
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Fig. 2. Regulation of wnt/-catenin pathway by circRNAs during osteogenesis,
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The circRNA3140 expression is closely associated with TLRs expression
and the NF-«B signaling pathway | 43]. Recently, Deng et al have shown
that circ_0138959 regulates the osteogenic differentiation of periodontal
ligament cells (PDLCs) by upregulating TNF Receptor Associated Factor
6 (TRAFG). They indicated that circ 0138959 directly inhibits miR-495-
3p which is an inhibitor of TRAF6 [59].

3.2.5. PI3/AKT signaling pathway

PI3/AKT signaling pathway is a multifunctional pathway involving
in many cellular functions. The abnormal upregulation of the pathway
has been shown in many types of cancers [60]. Moreover, the down-
regulation of the pathway may change the cell fate. The pathway also
has a role in osteogenesis. Therefore, suppressing the pathway may
disrupt the osteogenesis process. A study by Xin et al indicated that
hsa_circ_0066523 which is derived from forkhead box P1 (FOXP1)
upregulated the PI3 /AKT signaling pathway by suppressing phosphatase
and tensin homolog (PTEN) through epigenetically activating lysine
demethylase 5B (KDMSB). PTEN is a direct inhibitor of the PI3/AKT
signaling pathway [61].

3.2.6. Other pathways

S-phase kinase associated protein-2 (SKP2) is a protein that induces
the ubiquitination and subsequent degradation of RUNX2. Circ_ 0087960
has been shown to induce osteogenesis of periodontal ligament stem
cells (PDLSCs) by suppressing the function of SKP2 [62]. Another study
showed that circ 0062582 positively regulates the osteogenic differen-
tiation of BM-MSCs by stabilizing osteogenic transcription factors
through the miR-145/CBFB axis [63]. Circ_0019693 has been shown to
induce osteogenesis-coupled angiogenesis in BM-MSCs by sponging
miR-942-5p and subsequent overexpression of Purkinje cell protein 4
(PCP4) [64] which is involved in calcium deposition possibly through c-
Jun NH2-terminal kinase (JNK) signaling pathway [65].
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4. CircRNA as an inducer in osteogenic differentiation

Bone is considered as a self-healing organ in which bone remodeling
restores bone structure and function and maintains bone integrity over
time. Bone remodeling affords the healing of small bone defects less than
8 mm in size [66]. However, major injuries and defects that are caused
by trauma, infections, tumors, or congenital disorders could not be
healed by bone remodeling and in such cases, painful surgical in-
terventions and bone substitutes are used [67]. Standard bone sub-
stitutes that are used in clinics include autograft or allograft ilium, tibia,
and fibula. While the use of autograft bones ensures no immune rejec-
tion, its clinical usage is limited due to the side effects at the donor site as
well as the shortage of graft sources. In addition, there is a risk of disease
transmission when allograft bone is used. As a result, an alternative to
bone substitute is required to be used in clinics. Bone engineered grafts
fabricated by the tissue engineering approaches may fulfill the demands
for bone substitutes [65].

Functional tissue/organ regeneration is the ultimate goal of tissue
regeneration. In this regard, tissue engineering approaches are
employed polymers, stem cells, and growth factors/inducers to generate
a construct to be used as a bone substitute (Fig. 3) [69]. Mesenchymal
stem cells (MSCs) and induced pluripotent stem cells (iPSCs), by
differentiating into osto-like cells (osteoblasts and odontoblasts), have
been widely used in bone tissue engineering [70,71]. Osteogenesis in-
cludes the formation of osteoblasts and odontoblasts, which depend on a
different microenvironment in vivo [72,73]. Many inducers have been
used to differentiate stem cells into osteo-like cells. Small molecules
including ascorbic acid, p-glycerophosphate (pGP), and dexamethasone
(DEX) have been widely used during the osteogenesis of stem cells [ 74].
Bone tissue-specific genes and miRNAs have been also used [75-77].
Due to their role in osteogenesis, researchers have used circRNAs to
induce osteogenic differentiation of stem cells.

A study by Han et al showed the upregulation of circ_ 0076690 during
the osteoblastic differentiation of BM-MSCs. They demonstrated that the

raft

Scaffold
implantation

Fig. 3. Bone tissue engineering. Stem cells, polymeric scaffolds, and growth factors/inducers are the main components of bone tissue engineering.
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overexpression of circ_ 0076690 could increase the expression of RUNX2
by targeting miR-152. They also found that miR-152 is a negative
regulator of osteogenesis and directly inhibits the expression of RUNX2
[78]. In another study, Ji and colleagues overexpressed to induce oste-
ogenic differentiation of BM-MSCs. They found that circ_0006215 in-
duces osteogenic differentiation through miR-942-5p/RUNX2 axis [79].
Jiang et al also showed that the overexpression of circ-0007292 pro-
motes the osteogenic differentiation of posterior longitudinal ligament
cells [80]. Similar results were observed when circRNA-23525 was
overexpressed in AD-MSCs [81]. Ji and coworkers have evaluated the
circRNAs that have been overexpressed during osteogenic differentia-
tion of MSCs. They found that circRNA124534 overexpressed during
osteoblastic differentiation. The overexpression of circRNA124534 in
human periodontal ligament stem cells (hPDLSCs) induced osteogenesis
in vitro and in vivo. They showed that circRNA124534 acts through the
miR-496/p-Catenin pathway to induce osteogenesis [82]. In another
study, Ji et al also showed that overexpressing circ_ 0026827 in hDPSCs
induces heterotopic bone formation in BALB/c homozygous nude mice
[83]. Another study also indicated that upregulating circFOXP1 in AD-
MSCs could induce heterotopic bone formation in vivo [84]. Similar
results were observed when CDRlas was used to induce heterotopic
bone formation in a critical-sized mouse calvarial defect model [47].
Huang and colleagues found that circRFWD2 overexpression in DPSCs
induced osteoblastic differentiation by activating TGF-f signaling
pathway [56]. Another study by Ge et al showed that cireSIPA1L1 could
also induce osteoblastic differentiation of DPSCs through TGF-p
signaling pathway [85]. The results of these studies indicated the role of
circRNAs as a potential inducer to promote osteogenic differentiation of
stem cells to be used in bone tissue engineering.

5. CircRNA dysregulation during bone-related diseases

The dysregulation of circRNAs has been reported in bone-related
diseases such as osteoporosis, osteoarthritis, and osteosarcoma [86].
Osteoporosis is a prevalent bone disease that is characterized by low
bone density and high bone fragility. The dysregulation of signaling
pathways (i.e., Wnt and RANKL-RANK pathways) is involved in the
pathogenesis of the disease. Some miRNAs such as miR-506-3p and miR-
7223-3p inhibit bone resorption. It is shown that circUBAP2 and
circRNA AFF4 suppress miR-506-3p and miR-7223-3p, and induce bone
resorption [56]. Another study showed that circ 0011269 sponges miR-
122 and thereby promoting osteoporosis |27 ]. Osteoarthritis is charac-
terized by chronic inflammation, cartilage degradation, and bone
thickening. Inflammatory agents play a crucial role in the pathogenesis
of osteoarthritis, particularly by inducing oxidative stress. It is reported
that circRNA.33186 is involved in the early stage of osteoarthritis by
sponging miR-127-5p and increasing the expression of matrix
metalloproteinase-13 (MMP-13) [88]. CircRFWD2 and circINOS0
induce the expression of IL-1p and influence osteoarthritis [86]. Other
circRNAs such as CircCDH13 and CircRNA-UBE2G1 have been shown to
be dysregulated in osteoarthritis [589,90]. However, the exact mecha-
nism of these circRNAs needs to be elucidated. Ostecsarcoma is a
common bone cancer which is mostly happened in the epiphysis of long
bones. CircUBAP2 has been shown to induce osteosarcoma by sponging
miR-641 and increasing the expression of YAP1 [91]. In addition,
aberrant expression of circAGFG1 and circular RNA PRKAR1B may also
correlate with the progression of osteosarcoma [92,93]. As circRNAs
play a role in the progression of bone-related diseases, targeting these
specific circRNAs might be a promising non-invasive treatment option
for such diseases.

6. Concluding remarks
CircRNAs were first considered as a by-product of aberrant splicing

of primary transcripts. By the growing evidence, now, it is well known
that they play a crucial role in the regulation of gene expression in
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eukaryotes. Therefore, they are believed to be involved in many cellular
functions such as development, proliferation, differentiation, and
migration. Later studies indicate the role of circRNAs in osteogenesis
which could provide a biomarker for diagnosis of bone-related diseases.
CircRNAs have been shown to be able to regulate many cellular path-
ways including wnt/p-catenin, MAPKs, TGF-f, NF-«B, PI3/AKT, and
other pathways to induce osteogenesis in vitro and in vivo. Therefore,
circRNAs might be a suitable inducer to promote osteogenic differenti-
ation of stem cells in bone tissue engineering approaches. While differ-
ential expression analyses have shown that hundreds of circRNAs might
be involved during osteogenesis, only some of them have been used as
an inducer for osteogenic differentiation of stem cells. In addition,
further differential expression analyses with larger sample sizes are
required to confirm the expression level of circRNAs during osteo-
genesis. CircRNA dysregulation has been reported in bone-related dis-
eases such as osteoporosis and osteonecrosis. This shows that circRNAs
could also be a target for targeted therapy of such diseases. However, the
studies are relatively new, and more researches are needed to explore
the exact mechanisms of circRNAs during osteogenesis and map the
specific interactions between circRNAs-miRNAs-mBRNAs during osteo-
genesis. In addition, more studies are required to evaluate the potential
of specific circRNAs as a biomarker or therapeutic target for osteo-
related diseases.
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