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Abstract— The presence of atmospheric particles in
multispectral imageries such as Landsat 8 OLI can reduce
the visual acuity of the imageries. The most ideal method to
reduce the existence of atmospheric particles in the imagery,
as well as to enhance the visual appearance of the imagery, is
to employ atmospheric corrections. However, atmospheric
corrections are a very complex process. Besides, sometimes
the results don't really have an impact visually. There are
many other methods to enhance an imagery radiometrically,
either by stretching the pixel value,shifting the histogram, or
reducing the presence of clouds. This research aims to
velop practical formulations to enhance the spectral value
of the Landsat 8 OLI imagery bands, by reducing the
presence of aerosol particles using the C/A band. Several
regression models were involved in the construction process
of these formulations. The accuracy assessment was
performed using the Pearson correlation coefficient and
RMSE, using the USGS Landsat 8 OLI TOC imagery as a
comparison. The results showed that the radiometric
imagery enhancement using the C/A band gave satisfactory
results. Apart from providing a significant visual sharpness
increase, for the exponential model with parameters, the
average Pearson correlation eCBfficient is 0.96, with an
RMSE value of 0.04, relative to the USGS Landsat 8§ {al
TOC product. For a more practical model, we can omit the
parameters in the exponential model. The results that will be
obtained are still quite accurate. Furthermore, we can
implement this enhancement model directly on digital
numbers.

Keywords:  radiometric  enhancement, atmospheric
correction, Landsat 8 OLI, coastal aerosol, spectral indices

I. INTRODUCTION

Thc visible bands on multispectral imageries such as
the Landsat 8 Operational Land Imager (OLI), are visually
the bands most problematic with radiometric acuity. This is
because the visible bands have short wavelengths, making
them most vulnerable to atmospheric disturbances, such as
dust, haze, and clouds. So thatin general, the appearance of
the features in the composite imagery of the visible bands
will appear darker.

A practical solution for visual feature identification,
perhaps, is to create a composite inn;ery using bands that
have a longer wavelength. Such as Near Infrared (NIR) or
Short Wave Infrared (SWIR) bands. Because NIR and
SWIR have longer wavelengths, so that atmospheric
disturbances are minimized. As a result, the feature
appearance on NIR and SWIR tends to be sharper than the
v.isible band.
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However, sometimes certain features are easier to
identify visually in visible bands. For example, to
distinguish between buildings and bare lands, it will be
easier to see in Landsat 8 composite 4,3,2, than in Land sat
8 composite 6,5 4 for example. Because in composite 4,3.2
(true color composite), the roof of the building will show
the original color as the color of the object that we see
directly in the field. Meanwhile, the Landsat 8 composite
of 6,54 (false color composite), the color of the roof of the
building and the color of the bare lands tend to be the same.
Despite the fact, the features of the composite 654 are
much clearer when compared to composite 4,3,2.

One of the reasons why the appearance of the features
in the imagery looks darker, especially in the visible bands,
is due to atmospheric interference. Therefore, one
technique to enhance visible bands or other bands is to
reduce or eliminate atmospheric disturbances from the
imagery. The most ideal method for reducing atmospheric
disturbances is by employing atmospheric correction.

Various methods of atmospheric corl‘ecla have been
developed. Starting from methods with image based
approach, such as Dark Objects Subtraction (DOS)
[31][32][48]., Empirical Line Method (ELM) [16]. and
histogram matching [35]. Up to complex methods based on
physical models, such as 65 [13], 658V [13][36]@41},
Atmospheric  Comrection (ATCOR) [35], Landsat
Ecosystem Disturbance Adaptive Processing System
(LEDAPS) [22], Landffilirface Reflectance Code (LaSRC)
[15], MODTRAN4 [2]. Fast Line-of-sight Atmospheric
of Spectral Hypercubes (FLAASH) [27],
Framework for Operational Radiometric Correction for
Environmental monitoring (FORCE) [12], and Image
Correction (1ICOR) or OPERA [39]. Although very ideal,
atmospheric corrections are very complex processes.
Besides, sometimes the results don't really have an impact
visually.

Another technique for increasing the radiometric
sharpness of the visible bands is by stretching the imagery
pixel values. Either linear stretching, non-linear stretching,
or histogram modification [20][30][44]. This method is
quite practical, but has risks. Especially if the atmospheric
disturbance is severe. For example, the presence of a large
enough cloud. In case of the presence of a large number of
clouds or brightly colored objects, the pixel value
stretching method often fails. Because the cloud itself or
other bright objects will get sharper and seem to get bigger.
This is because when we stretch the pixel value of the
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imagery, the pixel value of the aerosol particles is also
stretched.

Another potential method to increase the radiometric
aelrpness is to remove cimrus clouds from the imagery.
Cirrus clouds form primarily in the upper troposphere.
above about 8 km, where temperatures are generally below
-30° C [3]. In a multispectral imagery like Landsat 8, this
cloud lyenerellly looks like a white mist with a smooth
texture. The presence of cirrus clouds can sometimes
darken the appearance of the features on the multispectral
imageries. Reference [28] developed a method for
removing cirrus clouds in Landsat 8 imagery, using the
Cirrus bands available in Landsat 8. Unfortunately, this
method is only effective for cirrus clouds. As for other
types of clouds, or other atmospheric disturbances, this

method does not have any eff'ect-
33

As the last generation of the Landsat series. The
Landsat 8 OLI has a number of new technological features.
Among them is the existence of the Coastal/Aerosol (C/A)
band [10][23]. The C/A band on Landsat 8 OLI is a band
that has a spectrum range of 0433 - 0453 pm [10][23].
Meanwhile the Landsat 8 OLI blue band has a spectrum
range of 0450 - 515 pm [10][23]. Therefore, the C/A band
has a shorter wavelength than the blue band. So that the
C/A band is also called the ultra blue band [38]. Because it
has the shortest wavelength of all OLI bands, C/A is the
band most susceptible to aerosol particle interference. In
other words, the C/A band stores the spectral value of
aerosol particles in the greatest quantity among all OLI
bands. The concentration of the spectral value of the
aerosol particles which is quite dense in the C/A band has
the potential to be used to reduce the presence of aerosol
particles in other bgads in the Landsat 8 OLI imagery.

The C/A band can be used for the characterization of
aerosol optical properties when removing atmospheric
effects over land targets [29]. Reference [15] use the Cﬂ
band for atmospheric correction. Because C/A s
particularly helpful for retrieving aerosol properties, as it
covers shorter wavelengths than the conventional Landsat,
TM and ETM+ blue bands [15].

This research aims to develop me practical
formulations to enhance the spectral value @ the Landsat 8
OLI imagery bands, by reducing the presence of aerosol
particles using the Coastal/Aerosol (C/A) band.

II. METHOD DEVELOPMENT

The basic concept of the method developed in this
research is that the spectral value of aerosol particles in
each band other than C/A is reduced by the spectral value
of the aerosol particles in the C/A band. So that the
presence of the spectral value of aerosol particles in other
bands in the Landsat 8 ima; can be reduced. This
method is actually inspm by the Normalized Difference
Spectral Index (NDSI), such as the Normalized Difference
Vegetation Index (NDVI) [24] or the Normalized
Difference Water Index (NDWI) [6][19][37].

NDVI enhances vegetation features reducing the
spectral value of non-vegetation features by using a band
that is sensitive to water and soil features (red band) as a
sub-factor. Meanwhile, NDWI enhances water features by
reducing the spectral value of non-water objects by using
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bands that are sensitive to vegetation and soil features (NIR
or SWIR bands) as sub-factors. By compiling an NDSI
formula that is similar to NDVI and NDWI, where the C/A
band is used as a subtractor, it is hoped that it will reduce
the presence of atmospheric particle spectral values and
enhance the spectral values of other bands on Landsat 8
OLL

Therefore, the basic formula developed in this research
is as follows:

' Pi~ Pea
L= 1
P = 5T, (D

Where:

p;: the spectral value of band i enhanced

pi: the spectral value of band i1 (band other than C/A)
Pe: the spectral value of the C/A band

Visually, the transformation result from (1) is effective
for reducing the aerosol particles in any of the other OLI
bands. There is one problem, because an NDSI
transformation will generally produce a spectral value in
the range of -1 to 1. This is not a typical spectral
(reflectance) value. Moreover, negative values have the
potential to complicate some further analysis, such as
square root operations. So that the transformed value can
be stretched, for example to be 0 to 1. By using the
following formula:

Pi- pca_[_ 1)

¢ Pi Pea
=TT @
Pi-Pea ‘Di‘ Pea
P; _ PitPca Pi* Pea (3)
2p;
P =5 )
‘ 2(pi‘ pca)
r pi
L= 5
P = (5)

Equation (5) will give a typical spectral value for
reflectance, which is from 0 to 1. However, another new
problem arises here. Considering that (5) is a non-linear
transformation, the spectral value of the transformed
imagery has the potential to lose integrity. To solve this
problem, the output of (5) must be transformed back to be
linceu'hc original TOA value. Linear is meant here is
linear in terms of the spectral value of the surface features

In order to convert the transformed imagery's spectral
value to linear to the original spectral value, we must first
investigate the correfilbn between the transformed
imagery of (5) and the Top of Atmosphere (TOA)
reflectance value. For this purpose, a number of regression
models can be used. Such as linear, exponential,
logarithmic, polynomial, and power.

In the process of this investigation,a number of samples
(region of interest) are required, to build a correlation
model between the original TOA reflectance spectral value
and the TOA reflectance spectral value resulting from the
transformation of (5). Of course, the sample in the imagery
must be selected for any spectral classes in clear regions
from atmospheric disturbances. These spectral classes
represent the basic objects in the multispectral imagery,
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namely vegetation features, urban and bare land features,
and water features.

II. IMPLEMENTATION AND RESULTS

The imagery used in this research is the Landsat 8 OLI
imagery level-1, path/row 117/062, acquired on April 22,
2015. The accuracy assessment for the method developed
in this research was carried out by comparing the spectral
value of the transformed results, with Top of Canopy
(TOC) reflectance. In this case, TOC is considered as
ground t reflectance. The comparison method used is
Pearson correlation coefficient (r) [25] and Root Mea
Square Error (RMSE) [1][21]. Which are formulated as
follows:

i TG0 (v7) ©

[Emezm 65

RMSE= (N

‘Where:

x;: the i™ enhanced Landsat 8 band
yi: the i USGS Landsat 8 TOC band
n: number of sample pixels

Landsat 8 OLI cl-2 imageries in TOC had been
provided by USGS and can be downloaded for free from
the website https://earthexplorer.usgs.gov. This Landsat 8
OLI imagery is atmospheric corrected using the LaSRC
[11][15] m . Of course, in the process of accuracy
assessment, the Landsat 8 OLI level-2 (surface reflectance)
imagery selected 1s the same acquisition imagery as the
Landsat § OLI level-1 imagery used to build the model.
Neuﬁly path/row 117/062 acquired on April 22, 2015.

In this research, the enhancement process was camried
out on the TOA reflectance. So that the Landsat 8§ OLI
imagery is first calibrated into TOA reflectance. Based on
the results of the correlation investigation between the
bands tremsied by (5) with the TOA reflectance bands,
it turns out that the correlation between the transformed
spectral value of (5) and the original Toatﬂcclimcc value
on the bands appears to be power. The details can be seen
in Table I. The actual high comelation varies between
exponential, polynomial, and power. However, for
convenience, we generalize to exponential and power.
Because the exponential and power correlation look strong
for all OLI bands. The polynomial generally has a high
correlation coefficient, but the value drop on the SWIR 1
band. Furthermore, we do not recommend the polynomial
model due to the complexity of the equation.

Therefore, to convert the spectral value transformed by
(5) to be linear to the original TOA reflectance value, the
general formulas are as follows:

p::aieﬁi(tﬁj) (8)
Or
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Bi
;o R pi
P ((Pi' Pm)) ©

pE: the spectral value of band 1 enhanced

pi: the spectral value of band i (band other than C/A)
Pea: the spectral value of the C/A band

o and fi: parameters for band i (band other than C/A)
e: the natural logarithm number 2.71828182845905

Where:

Here the parameters o and fi in (8) and (9) are
determined using a number of regions of interest (ROI), in
the area that is clearest from atmospheric disturbances in
the imagery. ROIs were selected stratifiedly in several
spectral classes, namely Dense Vegetation, Medium
Vegetation, Sparse Vegetation, Urban and Bare lands, and
Water Bodies. Dense Vegetation includes Dense Dryland
Forest, Dense Swamp Forest, and Peatland Forest. Medium
Vegetation includes Mixed Garden, Palm Oil Plantations,
Peatland Shrub and Bushes, Rubber Plantations, Sparse
Dryland Forest, and Sparse Swamp Forest. Sparse
Vegetation includes Grass, Shrub and Bushes, Swamp
Grass, and Swamp Shrub and Bushes. Water Bodies
include Open Water and Swamps. The entire ROIs cover a
total of more than 38000 pixels, which is more than
enough to build a regression model. These ROIs will also
be used in the process of accuracy assessment or model
validation.

For simplicity, we can ignore the parameters o and fi
in the exponential equation (8). In other words, the value of
these two parameters is set to 1. So the formula looks like
this:

p; = e((Pa-pipmJ) (10)

For practical purposes, equation (10) is actually
sufficient to transform the spectral value of the imagery
transformed by (5) to be linear with respect to the original
TOA reflectance. However, for accuracy purposes, of
course the parameter values o; and ff; must be estimated
accurately.

Henceforth, because we disregard linear, logarithmic,
and polynomial models, and we add a simplified model
(10), then in the process of testing the accuracy or
validating the m(:de will only use three models, those
are (8),(9), and (10).The results of the accuracy assessment
can be seen in Table II.

Visually, the results of imagery transformation using
the three models in Table 1I do not show a significant
difference in appearance. The differences will only have an
effect if we do a quantitative analysis. The appearance of
radiometric enhanced imageries usingnm exponential
model without parameters can be seen in Fig. 1, Fig. 2, Fig.
3,Fig. 4, Fig. 5, and Fig. 6.
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TABLEL RADIOMETRIC ENHANCEMENT REGRESSION MODELS
Linear Exponential Logarithmic Polynomial Power
Bands
Eg. R? Eq. R Eq. R? Eg. R Egq. R
15255,
Blue L4655 1 69591 | go002ers | o970z | D80SO T g o5as | o 3gex | 09803 | 18298x555 | 0.9685
S06813 +0.7486
+2.5801
16435
Green | UTEYC D Gasea | poossesars | ossi7 | Q20O g eer | C0sa92x | 09287 | 07719°@ | 08300
S02100 +0.3186
+0.0932
16435,
Red 0613 -1 6 0339 | oooese™ | 0osos | "2 1 g e3ee | J0sa02x | 00823 | 07710829 | 09620
0.1236 +0.3186
+0.0032
082975
NIR 03524x 1 g orig | 00003 | pogso | OIBITINCO T g gans | 0234k | 08015 | 050845177 | 0.9653
00067 +0.3608
+0.0319
0.3797x 0.05691n(x) 11515
SWIR | : 05770 | 0.003855~ | 09344 03306 | -04203x | 07831 | 02843x47 | 09521
00591 +0.1737
+0.0329
1 0436
swiRz | P9 a0kt | oooseer e | ossza | OO T os | oo | 0oass | 0205102 | poaro
00536 +0.1033
+0018
Average 07914 08574 06233 08856 09317
* x: enhanced bands, In: naturl loganthm, e: 271828 182845005, Eq.: oquulion, R coefficient of correlation
TABLEIL ACCURACY ASSESSMENT
B
[ P P
. ) ()
ptp ) ) "p i
Bands e e e e (it p.,)
r RMSE r RMSE r RMSE
Blue 0.96 1.53 0.98 0.08 0.97 0.06
Green 0.89 1.44 0.95 0.03 0.91 0.05
Red 0.97 1.3 0.99 0.02 0.98 0.02
NIR 0.93 1.72 0.95 0.04 0.94 0.04
SWIR 1 0.8 1.51 0.94 0.03 08 0.06
SWIR 2 0.89 1.26 0.98 0.05 0.88 0.05
Average 0.91 1.46 0.96 0.04 0.91 0.05

T Pearson comrelation cocfficient
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Fig. 1. Landsat § OLI imagery path/row 117/062 true color composite
432, (a) Onginal TOA imagery, (b) USGS TOC imagery, and (c)
Radiometrc enhancement imagery using exponential equation without
parameter

Fig. 3. Landsat8 OLI imagery path/row 117/062 false color composite
6,54, (a) Original TOA imagery. (b) USGS TOC imagery, and (c)
Radiometric enhancement imagery using exponential equation without
pamameter

Fig.2. Landsat 8 OLl imagery path/row 117/062 false color composite
432, (a) Original TOA imagery, (b) USGS TOC imagery, and (c)
Radiometric enhancement imagery using exponential equation without
parameter

978-0-7381-4432-0/20/$31.00 ©2020 IEEE 152

Fig. 4. Landsat 8 OLI imagery path/row 117/062 false color composite
7.65. (a) Original TOA imagery. (b) USGS TOC imagery. and (c)
Radiometric enhancement imagery using exponential equation without
parmeter
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Fig.5. Landsat 8 OLI imagery true color composite 4,32, (a) Bare lands in original TOA imagery. (b) Bare lands in USGS TOC imagery. (c) Bare
lands in radiometric enhancement imagery using exponential equation without parameter, (d) Clouds in original TOA imagery. (¢) Clouds in USGS
TOC imagery. (f) Clouds in radiometric enhancement imagery using exponential equation without parameter, () Urban in original TOA imagery, (h)
Urban in USGS TOC imagery. (i) Urban in mdiometric enhancement imagery using exponential equation without parameter, (j) Water bodies and
vegetation in original TOA imagery, (k) Water bodies and vegetation in USGS TOC imagery, and (1) Water bodies and vegetation in radiometric
enhancement imagery using exponential equation without parameter

978-0-7381-4432-0/20/$31.00 ©2020 IEEE 153
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Fig.6. Urban features on Landsat 8 OLI imagery composite 43 2. (a)
Onginal TOA imagery. (b) USGS TOC imagery. and (¢) Radiometric
enhancement imagery using exponential equation without parameter

IV. DISCUSSIONS AND CONCLUSIONS

In this research, Pearson correlation coefficient (r) was
chosen as the relative accuracy assessment method to
investigate the relationship between the spectral values of
the enhanced bands and the bands from the USGS TOC
imageries. The reason why we used the Pearson correlation
coefficient to assess the accuracy of the enhanced
imageries, because we assume that the spectral value of the
enhanced imageries will not be exactly the same as the
USGS TOC imageries. Because after all, the processing
method is different. USGS TOC is processed using LaSRC.

If the Pearson com:m)n coefficient value is high
(close to 1), it means that there is a positive linear
relationship between the spectral value of the enhancement
results and the USGS TOC spectral values. Furthermore,
this means that the spectral value of the enhanced bands is
in line with the spectral value of the USGS TOC bands.

Meanwhile, RMSE was used to compare the absolute
difference between the spectral val@ the enhancement
results and the USGS TOC spectral values. The lower the
RMSE value, the more similar the spectral value of the
sharpening results is to the USGS TOC spectral values.

978-0-7381-4432-0/20/$31.00 ©2020 IEEE

Based on Table II, we see that the highest accuracy is
in the exponential model with parameters. This can be seen
from the average value of the Pearson correlation
coelTicient which is the highest and the average value of the
RMSE 1is the lowest. The high correlation in this
exponential model is consistent with various research
results, which test the correlation between a number of
biophysical parameters with NDSI such as NDVI. Such as
the Leaf Area Index (LAI) with NDVI [7][47], and Above
Ground Biomass (AGB) with NDVI [45]. Therefore,
basically, the correlation between the spectral value of
biophysical features and NDSI such as NDVI is closer to
the exponential form. Likewise with the enhancement
method developed in this research.

The surprising fact is, the exponential model without
parameters also gives quite accurate results, almost
comparable to the power model. This is very interesting,
considering that the exponential model without parameters
is a very practical formula. Where no sample and parameter
calculation is required in the implementation.

However, the exponential model without parameters
RMSE values are quite large. This is understandable,
considering the results of the transformation using the
exponential model without parameters (10) will produce
pixel values in the range 1 to e. To reduce the RMSE value,
we can stretch the spectral value histogram into a range of
0to 1, by using the following formula:

e an

Of course, stretching the spectral value histogram using
(11) will reduce the practicality of the parameterless
exponential model. Therefore, this technique is only
intended for quantitative analysis ile for wisual
analysis, multispectral classification, Object-Based Image
Analysis (OBIA) [42], or Geographic Object-Based Image
Analysis (GEOBIA) [43], this technique 1s not required.

TABLE IIL ACCURACY ASSESSMENT
| (&)
Bands ellnval
r RMSE
Blue 0.96 0.30
Green 0.89 024
Red ’ 0.97 0.16
NIR 0.93 031
SWIR 1 - 0.8 026
SWIR 2 k 0.89 0.14
Average 0.91 024
35

Table IIT shows the results of the accuracy assessment
of the exponential model without parameters, after the
spectral values had been stretched to 0 to 1 using (11). The
Pearson correlation coefficient values relatively will not
change, only the RMSE values change. The RMSE values
are smaller than parameterless exponential model without
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stretching. But the RMSE values still not as accurate as the
exponential model with parameters or power model.

Therefore, if you want to build a regression model
between vegetation biomass and NDVI, for example, by
using the enhanced imagery with the method developed in
this research, then a more robust option is to use an
exponential model with parameters or a power model. Asa
consequence, you have to assign a number of spectral value
samples to the various spectral classes present in the
imagery. These samples are needed to determine the
parameters o and p in each model.

a Overall, of the three models validated in Table II, the
radiometric enhancement of Landsat 8 OLI imagery using
the C/A band is able to provide spectral values those are
cl()s the USGS Landsat 8 OLI TOC product. This means
that the method developed in this research can be used not
only for visual analysis, but also for quantitative analysis.
Such as the spectral value index transformation, and the
like. However, for physical modeling such as using a
spectral library, of course the enhancement method
developed in this research is not recommended.

When observed wvisually on various imagery
composites, the increase in visual elcuis a result of
radiometric enhancement is most evident in the visible and
near infrared (VNIR) bands. The increases in visual acuity
referred to here are the differences in visual appearance
between surface features, the more clearly visible and the
easier to distinguish from one another. Such as differences
in appearance between different vegetation features.

Meanwhile, on the SWIR bands, the effect is not as
clear as VNIR bands. Although on the SWIR bands the
surface features appear brighter overall, so that the
difference in visual appearance between surface features
does not change much between before and after
enhancement. On the SWIR bands, the effect is quite
noticeable on the cloud features. Where the clouds E;u‘
darker after radiometric enhancement, as shown in Fig. 3
and Fig. 4.

On Fig. 1, Fig 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 visually
it is clearly visible the difference in the appearance of
surface features between the time before and after the
enhancement. After enhancement, the surface features are
more visible, even when compared to the Landsat 8 TOC.
Dense vegetation, which initially looks dark on TOA and
TOC, looks brighter in the enhanced imagery. So that it is
visually easier to distinguish vegetation features.

While in Fig. 5, where the appearance of various
thematic objects is emphasized more clearly, we can see
more clearly the differences in the il&rics before and
after being enhanced. All imageries in Fig. 5 are true color
composites of 4,3 2. Bare lands and urban, for example, can
be seen more clearly the difference in color variations in
the same thematic features. As we all know, this is not the
case with false color composites. Whereas in the false color
composite of 6,54 for example, all urban features will be
the same color, even though the actual colors of the
buildings in the field are different. Meanwhile, urban and
bare lands will have the same tone/color, they differ only in
texture.

978-0-7381-4432-0/20/$31 .00 ©2020 IEEE

Urban features are indeed the most interesting facts in
this research, especially in true color composite. Where
these features appear clearly increased after the
enhancement process, even more clearly than USGS TOC
imagery, as seen in Fig. 6. Urban features increase in
sharpness while relatively maintaining the original colors
of objects in the field, such as the roofs of buildings. As a
result, building features are easier to distinguish from
ground features visually.

Inorder to investigate the effect quantitatively on urban
and bare land features, we can test it further usilathc Urban
Index (UI) [26], Bare Soil Index (BI) [5], Normalized
Difference Built-Up Index (NDBI) [46], Index-based
Built-Up Index (IBI) [18], Normalized Difference
Bareness Index. (NDBal) [17], or Enhanced Built-Up and
Bareness Index (EBBI) [4]. Especially if we want to map
urban features and bare land features.

The cloud features appear slightly darker in the
radiometric enhanced imagery, even in visible bands.
While the haze features are quite small in size, they appear
to have faded or almost disappeared. Although it needs to
be tested again on imageries where the presence of haze is
quite large. Of course, we can combine the enhancement
method in this research with cloud correction methods from
previous research, such as [8], [14],[28], or [34].

For more practical purposes later, you can even
implement the method developed in this research directly
on the Landsat 8 OLI Digital Number (DN). Where the
pixel values of Landsat 8 OLI, which have a 16-bit
radiometric resolution ranging from 0 to 65,535. This
means that you don't have to first calibrate the imagery into
TOA reflectance in order to use the enhancement method
from this research. The results you will get will be the same
as the enhancement process carried out in TOA, as in this
research.

The main drawback of the method developed in this
research is that we can no longer use the C/A band to be
combined with other bands that have been enhanced. This
is because the C/A band is used as a corrector. Therefore,
if in the future you need the C/A band to be transformed
with other bands, then you cannot use the enhancement
method from this research. A method similar to the model
developed in this research is exponential extrapolation
(EXP). Where EXP is used for aerosol determination by
utilizing the SWIR long wave band. The EXP method is
more used for atmospheric correction of aquatic features
[91[33].

Furthermore, the accuracy assessment or method
validation in this research was carried out using the USGS
Landsat 8 OLI TOC product, USGS Landsat 8 OLI TOC is
assumed to be the spectral values of objects in the field. In
other W()rds@ closer the spectral values of the enhanced
resultare to the spectral values of the USGS Landsat 8 OLI
TOC product, the more accurate the method will be. We
recommend that further studies be carried out using
samples of the spectral values of objects in the field that are
measured using an image spectroradiometer.
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