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Abstract— Wildfire is a common disaster that hits Indonesia 
every dry season, especially on the islands of Kalimantan and 
Sumatra. In order to reduce the impact of fire hazards, 
preventive measures are needed before the occurrence of fires. 
One of them is by setting up an information system such as 
EWS. The aim of this study is to create an effective image- and 
machine learning-based predictive model of the severity of 
forest and land fires based on vegetation conditions prior to 
burning. Three parameters of prefire vegetation conditions, 
namely vegetation greenness indices, vegetation moisture, and 
vegetation senescence, were selected as independent variables to 
predict the postfire dependent variable, i.e., fire severity. There 
are 25 vegetation greenness index options tested, using either 
ANN regression or multiple linear regression. The vegetation 
moisture information is represented by the Normalized 
Difference Moisture Index (NDMI). The vegetation senescence 
information is extracted using the Plant Senescence Reflectance 
Index (PSRI). Meanwhile, the wildfire severity is measured 
using the Burned Area Index for Sentinel-2 (BAIS2). All 
vegetation conditions and wildfire severity information were 
extracted from Sentinel-2 imageries. The topology of ANN 
regression models is configured from one to six hidden layers. 
More than 100,000 pixels are used as samples, which are then 
separated into training samples and validation samples. The 
results of model development and testing show that ANN 
regression with Inverted Red-Edge Chlorophyll Index (IRECI) 
as a vegetation greenness parameter is the model that has the 
highest accuracy in predicting wildfire severity. 

Keywords—fire disaster, Sentinel-2, machine learning, deep 
learning, artificial intelligence, artificial neural network 

I. INTRODUCTION 

Wildfire is one of the hazards that is included in the list of 
the top ten causes of disasters [16]. Of the total disasters that 
hit the world during 2000 to 2019, wildfire took the seventh 
position, which is 3% of all disasters that occurred during 
those 20 years [16]. In Indonesia, especially the islands of 

Kalimantan and Sumatra, forest and land fires are local 
disasters that have regional or even global impacts. Smoke 
from the forest and land fires can spread to neighboring 
countries and cause flight disruptions and various human 
health problems. Carbon emissions resulting from the forest 
and land fires will have a contribution to global warming. 

Remote sensing technology can provide information on 
the earth's surface at the time before burning, during burning, 
or after burning. Before burning, remote sensing imagery can 
provide information on the availability and distribution of 
fuels. In the event of fires, remote sensing imagery can 
provide information on hotspots or active fires. And at the 
time after burning, remote sensing imagery can provide 
information on the burned area. As a remote sensing satellite, 
Sentinel-2 satellite imageries are freely available to public 
worldwide with moderate spatial accuracy and high spectral 
accuracy [55][26]. Sentinel-2 imagery offers a mapping 
method that is fast, inexpensive and easy to implement 
[46][20]. The thematic maps produced can provide more up-
to-date information, because the availability of images can be 
obtained every 5 days [55][26][20][54]. In addition, Sentinel-
2 imagery is available online directly on the day of its 
acquisition, making it effective for monitoring wildfire events 
or wildfire severity in near real-time. 

Wildfire severity was defined as the degree of change in 
the soil and vegetation caused by fires. Fire severity indices 
are used to assess the impact of fire and burnt area extent. Fire 
severity mapping is crucial for the forest departments to set up 
mitigation measures and to restore the affected areas after the 
fire season [40] [53]. The severity of a fire is one of the factors 
controlling post-fire vegetation recovery and species 
composition [33]. In wildfire research, the terms burn severity 
and fire severity are often used interchangeably. Fire severity 
quantifies the immediate short-term fire effects on the local 
environment, whereas burn severity quantifies both the short 
and long-term impact as it includes response processes such 
as vegetation recovery [58][44]. This research was funded by the Center for Geospatial Information 
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Numerous severity indices have been developed, 
highlighting the standardized Normalized Burn Ratio (NBR), 
difference (dNBR), the standardized difference of NDVI 
(dNDVI), the relative version of dNBR (RdNBR), and Burned 
Area Index for Sentinel-2 (BAIS2) [40][53][13][56]; all of 
them used as independent variables used to deduce the field 
indices of severity at the pixel level. The Normalized Burn 
Ratio (NBR) is generally accepted as the standard spectral 
index for assessing fire severity. In case of heterogeneous 
landscapes, mapping of burn severity using Relativized dNBR 
is more suitable [31]. and some authors have highlighted the 
need for independent validation of the approach for specific 
regions and vegetation types [11]. 

The fuel for wild fires is almost entirely vegetation. While 
the distribution of vegetation features is very easy to identify 
on satellite imagery such as Sentinel-2. In remote sensing. In 
addition, there are also transformation methods to detect 
vegetation moisture, vegetation dryness, and so on. Where 
these parameters are strongly related to wildfire susceptibility. 
Therefore, by identifying the quantity, moisture, and dryness 
of the vegetation before it burns, we will basically be able to 
predict how severe the wildfire will be. In a nutshell, if we 
hypothesize that there is a correlation between the quantity 
and quality of vegetation features before burning with the 
wildfire severity levels that will occur, then we can simply 
build regression models to predict wildfire severity. 

If we assume that the correlation between vegetation 
quantity/quality and wildfire severity is linear, then we can use 
linear regression. However, if  the correlation is not linear, 
then we can use Artificial Neural Network (ANN) regression. 
Linear and ANN regression are machine learning algorithms. 
Meanwhile, machine learning itself is a subset of artificial 
intelligence (AI) technologies. If applied to geospatial 
information, then AI is often referred to as Geospatial 
Artificial Intelligence (GeoAI). GeoAI has its origins from 
GIScience methods applied to remote sensing data in order to 
tackle geospatial-specific big data challenges and problems 
[45]. GeoAI combines methods in spatial science, data 
mining, and high-performance computing to extract 
information from geospatial big data [49]. Nowadays, GeoAI 
applied in specific topic, such as spatially explicit model 
generation, question answering and summarization, social 
sensing and semantic signatures, even the moonshots [42]. 

There have been several previous studies using ANN to 
study wildfires. Whether it's for fire prediction 
[15][36][38][41][62], fire risk assessment [60], fire danger 
[47], fire susceptibility [28][43], fire scale [29], and so on. The 
purpose of this research is to develop an efficient image- and 
machine learning-based predictive model of the severity of 
forest and land fires that will occur based on vegetation 
conditions before burning. The main reasons for prioritizing 
the application of ANN regression over deciding to apply 
linear regression are the unknown distribution pattern of the 
data, and the unknown correlation trend between the quantity 
and quality of vegetation before burning and the severity of 
the wildfires that will occur. Given that ANN is a non-
parametric method, whereas linear regression is a parametric 
method that has pre-assumptions before prediction. The model 
generated from this research is expected to be used to predict 
the possible severity of wildfires in the short term, such as in 
the next few days or weeks. Furthermore, the model will also 
be able to be used in the development of the fire Early 
Warning System (EWS). 

II. RESEARCH METHODS 

A. Study Area 

This research was conducted in parts of South Kalimantan 
Province and parts of Central Kalimantan Province, 
Kalimantan Island, Indonesia. More precisely, the training 
area and testing area for sampling in the construction and 
validation of the regression model were carried out on three 
tiles of Sentinel-2 MSI imageries, namely T50MKA, 
T50MKB, and T50MKC, as shown in Fig. 1. 

 

Fig. 1. Study area 

B. Sentinel-2 Imagery 

In the burned area and fire severity mapping, at least 
multitemporal images are required at two different times, i.e., 
prefire and postfire. In this study, the prefire imagery is the 
Sentinel-2 imagery, which was acquired on August 9, 2019, 
and the prefire imagery is the Sentinel-2 imagery, which was 
acquired on September 13, 2019. In addition, this study also 
provides Sentinel-2 imagery for the acquisition of October 23, 
2019. The image for this October's acquisition is only used as 
a visual comparison of the results of model implementation. 

C. Vegetation Indices 

1) Vegetation Greenness: Vegetation greenness has a 
correlation with the quantity of vegetation. The higher the 
vegetation greenness value, the greater the quantity of 
vegetation, and, of course, the greater the volume of available 
fuel will be. There are lots of vegetation greenness indices 
that have been developed. However, only 25 of them will be 
tested in this research. More details can be seen in TABLE I.  

2) Vegetation Moisture: The vegetation moisture 
describes the quality of the fuel. The lower the humidity level 
of the vegetation, the more susceptible it is to burn later. The 
parameter to measure vegetation moisture used in this 
research is the Normalized Difference Moisture Index 
(NDMI) [10], which is formulated as in (1). 

 ���� =  
���������

���������
 (1) 

Where: 
SWIR1: Shortwave Infrared 1 band 
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3) Vegetation Senescence: Similar to vegetation 
moisture, vegetation senescence is also describe the fule 
quality. Vegetation senescence is basically used to identify 
vegetation that is mature or old. The higher the vegetation 
senescence value, the more vulnerable the vegetation is to 
burning. The parameter used to measure vegetation 
senescence in this study is the Plant Senescence Reflectance 
Index (PSRI) [50], which is formulated as in (2). 

 ���� =  
��������

���
  (2) 

PSRI is also used as masking in the model implementation 
for fire severity prediction. The vegetation that has a positive 
PSRI value or more than zero is considered to be burned later, 
while the rest will not burn. 

D. Fire Severity Mapping 

The model construction in this investigation is that the 
prefire vegetation conditions, i.e., vegetation greenness, 
vegetation moisture, and vegetation senescence, will 
determine the postfire fire severity. Of course, in this case, the 
fire severity is extracted from the burned area. The burned area 
identification was carried out using the Burned Area Index for 
Sentinel-2 (BAIS2) [23], which was formulated as in (3). 

 ����2 =  �1 − �
���∗���∗����

���
� ∗ �

����������

√����������
+ 1�  (3) 

Where: 
NNIR: Narrow Near Infrared band 
SWIR2: Shortwave Infrared 2 band

TABLE I.  VEGETATION GREENNESS INDICES 

No. Vegetation Indices Formula Literatures 

1 Soil Adjusted Vegetation Index (SAVI) ���� =  
�������

���������
�(1 + �); Where: L = 0.5 [7] 

2 Normalized Difference Vegetation Index (NDVI) ���� =  
��� − ���

��� + ���
 [39] 

3 Transformed Soil Adjusted Vegetation Index (TSAVI) 
����� =  

� ∗ (��� − � ∗ ��� − �)

� ∗ ��� + ��� − � ∗ � + � ∗ (1 + ��)
 

Where: a = 0.5, s = 0.5, X = 0.08 
[21] 

4 Modified Soil Adjusted Vegetation Index (MSAVI) ����� =  
(1 + �) ∗ (��� − ���)

��� + ��� + �
 

Where: � = 1 − 2 ∗ � ∗ ���� ∗ ����; s = 0.5 
[37] 

5 Difference Vegetation Index (DVI) ��� = ��� − ��� [6] 

6 Ratio Vegetation Index (RVI) ��� =  ��� ���⁄  [19] 

7 Perpendicular Vegetation Index (PVI) ��� =  
��� − ���

0.5 ∗ √��� + ���
 [6] 

8 Infrared Percentage Vegetation Index (IPVI) ���� =  
���

��� + ���
 [57] 

9 Weighted Difference Vegetation Index (WDVI) ���� = ��� − � ∗ ���; Where: a = 0.460 [34] 

10 Transformed Normalized Difference Vegetation Index (TNDVI) ����� =  �
��� − ���

��� + ���
+ 0.5 [27] 

11 Green Normalized Difference Vegetation Index (GNDVI) ����� =  
��� − �����

��� + �����
 [1] 

12 Global Environmental Monitoring Index (GEMI) 
���� =  h ∗ (1 − 0.25 ∗ h) −

��� − 0.125

1 − ���
 

Where: h =  
�∗�������������.�∗�����.�∗���

���������.�
 

[12] 

13 Atmospherically Resistant Vegetation Index (ARVI) ���� =  
��� − (2 ∗ ��� − ����)

��� + (2 ∗ ��� − ����)
 [61] 

14 Normalized Difference Index 45 (NDI45) ���45 =  
��1 − ���

��1 + ���
 [32] 

15 Modified Chlorophyll Absorption Reflectance Index (MCARI) ����� = �(��1 − ���) − 0.2 ∗ (��1 − �����)� ∗
��1

���
 [17] 

16 Enhanced Vegetation Index (EVI) ��� = 2,5 ∗
��� − ���

��� + 6��� − 7,5���� + 1
 [5] 

17 Sentinel-2 Red-Edge Position Index (S2REP) �2��� = 705 + 35 ∗
(��� + ��3) 2⁄ − ��1

��2 − ��1
 [25] 

18 Inverted Red-Edge Chlorophyll Index (IRECI) ����� =  
��3 − ���

��1 ��2⁄
 [35] 

19 Pigment Specific Simple Ratio (PSSRa) ����� =  ��3 ���⁄  [24] 

20 Anthocyanin Reflectance Index (ARI) ��� =  1 �����⁄ − 1 ��1⁄  [3] 

21 Green Leaf Index (GLI) ��� =  
2 ∗ ����� − ��� − ����

2 ∗ ����� + ��� + ����
 [52] 

22 Leaf Chlorophyll. Index (LCI) ��� =  
��� − ��1

��� − ���
 [8][9] 

23 Chlorophyll Vegetation Index (CVI) ��� =  
��� ∗ ���

������
 [52] 

24 Carotenoid Reflectance Index 550 nm (CRI550) ���550 =  1 ����⁄ − 1 �����⁄  [2] 

25 Carotenoid Reflectance Index 700 nm (CRI700) ���700 =  1 ����⁄ − 1 ��1⁄  [51] 

a. NIR: Near Infrared band; RE1: Red Edge 1 band; RE2: Red Edge 2 band; RE3: Red Edge 3 band 
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Henceforth, the classification of the fire severity in the 
burned area is carried out on the change in BAIS2 values 
between postfire and prefire, as formulated in (4). Equation 
(4) is a modification of [23], it aims to be able to use the United 
States Geological Survey (USGS) fire severity criteria later. 

 �����2 =  ����2�������� − ����2�������  (4) 

TABLE II.  FIRE SEVERITY CLASSIFICATION BASED ON DBAIS2 

Severity Level dBAIS2 Range 

Unburned < 0.100 

Low Severity 0.100 – < 0.270 

Moderate-low Severity 0.270 - < 0.440 

Moderate-high Severity 0.440 - < 0.660 

High Severity > 0.660 

 

The determination of the severity of the fire itself refers to 
the USGS criteria [14][18] as shown in TABLE II. This 
criterion was also slightly modified in value, including the 
elimination of the vegetation growth after burning. 

E. Artificial Neural Network Regression 

Let y be the dependent variable; x1, x2, x3, to xn are 
independent variables with the respective coefficients being 
1, 2, 3, to n, while b is the intercept. The relationship can 
be notated into multiple linear regression [48] as in (5). 

 � =  ��� + ��� + ��� + ⋯ + ��� + �  (5) 

For simplicity, the linear regression equation in (5) can 
also be denoted into vector equation as in (6). 

 � =  �� + �  (6) 

Henceforward, if W1, W2, W3, to Wn, each is a hidden layer 
with n nodes, B1, B2, B3, each is a bias, and  is the activation 
function, then the Artificial Neural Network (ANN) [59] 
regression with three hidden layers is formulated as in (7). 

 � =  ��
����

����
���� + �� + ��� + ��� + ��  (7) 

Where the activation function  is the Rectified Linear 
Unit (ReLU) [4] which is formulated as in (8). 

  = �
�, � > 0
0, � ≤ 0

   (8) 

The linear and ANN regression is implemented using the 
Python and Scikit-Learn [22]. For practical purposes, the 
outputs of regression models are all stored in files (.sav files), 
and later when executed on a Sentinel-2 imagery, these model 
files must also be called and run using Python and Scikit-
Learn. All developed program codes, including output from 
regression models, are stored at the Github repository 
https://github.com/syamaniulm/ann-fire-severity. 

F. Water Index 

Some vegetation indices, are very sensitive to water, 
especially turbid water. As a result, the turbid water has the 
potential to be identified as a burned area. Thus, the body of 
water needs to be masked. The method used for masking water 
bodies is the Modified Normalized Difference Water Index 
(MNDWI) [30], as formulated in (9). 

 ����� =  
�����������

�����������
  (9) 

G. Model Training and Validation 

Linear and ANN regression are supervised machine 
learning techniques, so they require training. In this context, 
the training areas in question are burned areas. There are more 
than 100,000 pixel burned areas that are used as training areas 
in this study. These training areas are separated into two 
clusters, i.e., 80% for the training data and the remaining 20% 
for the validation data. The capability of each model was 
assessed using three parameters, namely correlation 
coefficient (R2), Mean Absolute Percentage Error (MAPE), 
and Root Mean Square Error (RMSE). The best model is 
assessed by the highest R2 value (closest to 1) and the lowest 
MAPE and RMSE values (closest to 0). The whole process of 
computing R2, MAPE, and RMSE is done automatically using 
Python. R2 is calculated using training data, while MAPE and 
RMSE are calculated using validation data. 

III. RESULTS AND DISCUSSION 

The ANN used in this research is Multilayer Perceptron 
(MLP). In addition to the number of hidden layers, the number 
of nodes for each layer, and the activation function that is set 
in such a way, other parameters such as alpha, solver, learning 
rate, and so on, are left in their default settings. Especially for 
setting the number of hidden layers, in this research it is 
limited to six hidden layers. In Fig. 2, it can be seen that for 
ANN regression there are three models with the highest R2 and 
accuracy, namely SAVI, WDVI, and IRECI. And each of the 
three is an ANN regression with six hidden layers. Of these 
three vegetation indices, ANN with IRECI as the vegetation 
greenness parameter is the best model. This can be seen from 
the highest R2 value and the lowest MAPE and RMSE values. 
The R2 value of this model is 0.9154, and the MAPE value is 
9.52%. Because it has the highest correlation and accuracy, 
for practical purposes later on, we will recommend this model. 

Compared to ANN, linear regression has a simpler model. 
However, linear regression has several conditions to be 
accepted statistically. Among these conditions is that there is 
a linear relationship between the dependent and independent 
variables. And in the real world, this is often not the case. As 
seen in Fig. 3, it can be seen that all of the multiple linear 
regression models applied in this research as a comparison for 
ANN regression, none of them have any accuracy that can 
outperform ANN regression. This shows that the relationship 
between fire severity and the three independent variables in 
this research tends to have non-linear patterns. Thus, the 
application of ANN regression is generally more optimal. 

As an implementation example, we apply IRECI and 
MCARI. Since IRECI is the best model for ANN regression 
and MCARI is the best model for linear regression. The result 
is as shown in Fig. 4. In Fig. 4, we also present real fire 
severity facts based on Sentinel-2 imageries acquired on 
September 13, 2019 and October 23, 2019. If we visually 
compare the predictions, using both ANN and linear 
regression, to the fact of fire severity, it looks as if the 
prediction results have a fairly large commission error. 
Practically speaking, this cannot be translated as an error. 
Given that this research is not in order to identify where fires 
will burn. Rather, this research is only to predict if fires occur 
in certain locations, then how severe the fires will be. Of 
course, in the real world, areas that have the potential to be 
severely burned may not experience fires due to many factors. 
Such as the absence of sources of fire, including the mitigation 
actions taken by humans. 
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Fig. 2. Artificial neural network regression analysis results 

Although ANN regression has the best ability to predict 
wildfire severity, this model is relatively difficult to 
implement for practical purposes. Apart from execution time 
issues, ANN regression must be implemented using a 
programming language such as Python. Henceforward, the 
application of ANN regression requires operators or analysts 
to understand programming languages. Especially for the 
execution time problem, in this research we try to provide a 
solution by developing optimized Python codes to be executed 
on every Sentinel-2 imagery tile. Furthermore, if hardware 
resources are very limited, in later processing the image can 
be reduced in dimensions. As long as the dimensions of the 
rows and columns of the image are identical, for example, 
1,000 x 1,000 pixels. Users who have quite a bit of 
programming skills can, of course, take advantage of the 
source code of the program that we have prepared in our 
repository, as mentioned in section II.E, complete with the 
instructions for use. Meanwhile, users who are already 
proficient in programming, especially Python, can of course 
modify or optimize the source code that we have written. 

The models developed in this research are limited to how 
to predict the fire severity that will occur based on the quantity 
and quality of fuel. In short, this research only develops 
models to provide one of the input parameters in the geospatial 
EWS. Therefore, for the purposes of developing wildfire 
EWS, it is necessary to add other geospatial parameters. Such 
as air temperature, wind speed, wind direction, real-time 
existing hotspots, and even human accessibility information, 
such as roads. Furthermore, because the models developed in 
this research are short-term wildfire severity prediction 
models, it is recommended that information on vegetation 
conditions be updated regularly in the EWS. For example, 
every five days, referring to the temporal resolution of 
Sentinel-2 satellites. 

 

Fig. 3. Linear regression analysis results 
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Fig. 4. Sentinel-2 true color composite image, actual existing fire severity, 
and fire severity prediction results (H: High Severity; Mh: Moderate-high 
Severity; Ml: Moderate-low Severity; L: Low Severity; U: Unburned) 

IV. CONCLUSIONS 

In general, ANN regression is able to produce very 
accurate wildfire severity predictions, even more than 90% 
accuracy. In a practical sense, this accuracy is very capable 
and can be accounted for. However, ANN regression has 
limitations in terms of implementation efficiency. ANN 
requires programming skills for the analyst who will execute 
the model. Among all the vegetation greenness indices tested, 
especially for ANN regression, three vegetation greenness 
indices, i.e., SAVI, WDVI, and IRECI, are the best. In the 
implementation, you can choose one of the three, or directly 
choose the highest of the three, namely IRECI. Besides being 
the most accurate, the IRECI mathematical transformation 
model is also very simple. For the analysts who lack 
knowledge of programming languages, of course, they can 
take advantage of the multiple linear regression model using 
MCARI. Of course, with the consequence of losing accuracy 
compared to the ANN regression model. 
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