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ABSTRACT

Host of the previous research was related to non-parametric classification methods, states that the
Maximum Likelihood (ML) and Support Vector Machine (SVM) methods are the leading
classification methods in producing high accuracy. However, only a small proportion of studies
have compared the performance of these two methods using multitefporal remote sensing imagery,
particularly on Sentinel-2 and Landsat data. Thiftudy tries 1o evaluate and compare the
performance of ML and SVM classifiers to mapping land use/cover using Sentinel-2 and Landsat
multitemporal imagery data. The Tabunio watershed with an area of 62.586 ha has been mapped
with ten types of land uselcover are water b@, forest, bare land, residential, plantations,
agriculture, swamps, shrubs, pond, and mining. The confusion matrix and the Kappa coefficient
was used to assess classification accuracy. All classification results show a high overall accuracy
(OA) ranging from 86% to 95%. Among the two classifiers, four data series with different images
and sample sizes, SVM produced the highest OA than ML.
42
Keywords: Sentinel-2; Mnd.mr,%xximum Likelihood (ML); Support Vector Machine (SVM);

INTRODUCTION

Land use/cover maps are currently very important and indispensable in various fields,
especially for monitoring and management of natural resources, development strategies, and
E@Pbal change studies (Auliana et al., 2018; S. Kadir et al., 2013, 2016; Z. Abidin, 2019).
The land use/cover map is one of the most important documents providing information for
various applications, such as sfhitoring land use, environmental services, urban planning,
natural resource conservation, agricultural monit@hg, and land use/cover change dynamics
(Abbas & Jaber, 2020; Gebhardt et al., 2014; Gomez et al., 2016; Guidici & Clark, 2017; Nurlina et
al.,2020; Yunusetal., 2018).

Multiresolution remote sensing satellite imagery data as one of the most important data
sources for land cover mapping (Topaloglu et al., 2016) apart from its wide geographical
coverage and efficient cost, it also provides information from semi-detailed to very defg@iled
scale which makes Remote Sensing data irreplaceable (Khatam@@t al., 2016). Land
use/cover maps are usually made based on the approach of several remote sensing image
classification methods (Chen et al., 2017; Duro et al., 2012; Imran & He, 2015). However,
accuracy and processing time are still challenges for the remote sensing community (Gémez
etal.,2016).

Sentinel-2 with the latest generation of earth observation missions from ESA (European
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Space Agency) designed for land and coastal applications, including the Sentinel-2 A and
Sentinel-2 B satellites launched in June 2015 and March 2017, respectifiilly (Thanh Noi &
Kappas, 2017). Sentinel-2 remains active and enhances the mission of Landsat and SPOT
(Systeme Probatoire@3Observation de la Terre) (Wang et al., 2017). Sentinel-2 has wide
coverage capability, high spa§fll resolution (10-60 m), and temporal resolution (ten days
for Sentinel-2 A, B /five days Sentinel-2 A + B), and includes multispectral satellite imagery
( 13 spectral channels). Sentinel-2 has also received major research attention because of its
free access ald) global coverage. Various applications have been applied with Sentinel-2 A,
particularly in land use and land cover mapping, the practicality and effectiveness of
Sentinel-2 have been tested and show high application potential (Gaoetal.,2017; Yangetal.,2017).
However, because this is a new type of@}tellite image, so there is still little research using
Sentinel-2 for land use/cover mapping, more research is needed to conduct and evaluate the
usefulness of this satellite imagery. Before Sentinel-2 One of the most important and most
widely used digital data for remote sensing work is the Landsat satellite. Landsat satellite
missions [Eve continued to collect global imagery since 1972 and monitor the Earth
biweekly with a resolution of 30 m x 30 m. Landsat's open access policy in 2008 allowed
researchers to access this data freely so that monitoring of previously impossible land cover
changes was very easy to implement (Eitel et al., 2011).

Landsat data is also not static either, these satellite data products have evolved rapidly over
time, providing more data for researchers, and allowing more accurate classification of
different and more advanced processes. Landsat 5-TM (8 gs radiometric) has seven
channels, and Landsat 7- ETM+ (9 bits radiometric) has eight spectral bands with a
resolution of 30 m. whereas, the latest generation Landsat 8-OLI has 11 bands (12 bit
f@ometric), and this technology is considered the best choice for environmental analysis
(Clevers etal.,2017; Sibanda et al.,2015). Classification using Landsat imagery is not only
cost-effective but also accurate for making land cover maps that can be used for
environmental management, urban planning, forestry, agriculture, and many other sectors.

2

According to Lu and Weng (Lu &%’eng, 2007), not only image s(iflbility but also the
determination of the appropriate classification method can affect the accuracy of [fghd
use/cover mapping. Several kinds of literatures with various classification methods have
been developefifiind tested for land use/cover mapping from remote sensing data (Brodley &
Friedl, 1997; Li et al., 2014; Wa@&§ & Braun, 2009). This method uses a supervised parametric
algorithm classifier, namely Maximum Likelihood (ML) and the Support Vector Machine
(SVM) algorithm. In recent years, nonparametric methods (machine learning-based
algorithms) have become a major concern of remote sensing based applications. The use of
the SVM and ML classification algorithms has sighificantly increased. Most of the studies
used the ML method as one of the criteria for comparison withf§ther machine learning
algorithms (Basukala et al., 2017; Jhonnerie et al., 2015; Khatami et al., 2016).

Several studies have been conducted to determine the best classification method for land use
/ecover mapping trying to compare the accuracy of these classifiers with either the same
method or with different clgfbification methods. However, the conclusions are quite mixed.
Additionally, to the best of our knowledge, only a small of published studies have compared
and evaluated the time series performance B SVM and ML against different satellite
imagery, particularly in Indonesia. Therefore, the purpose of this study wWEto compares and
evaluates the performance of the two best classifier ML aff) SVM for land use/cover
mapping in the T#Hunio watershed of South Kalimantan using multi-spatial-temporal
satellite data from Sentinel-2 and Landsat data series.

MATERIALS AND METHODS

Materials used in this study include a 1: 50,000 scale digital map of the Indonesian Earth Administration
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(RBI), as areference for administrative boundaries at the research location. Obtained from the Geospatial
Information Agency (BIG). Landsat TMZETM+ /OLIL 8 OLI TIRS Satellite Imagery 2005, 2010, 2015,
2020 which is multispectral data with a spatial resolution of 30 m downloaded from
hitp:/fearthexplorer.usgs gov/ g 117 row 62. Sentinel-2 the year 2020 Satellite Imagery which can E£)
accessed through the website hitps://sentinel esa.int/web/sentinel/sentinel-data-access. The details of
the Landsat images used for this study are provided in Table 1.

Table 1. Satellite images used in this study

Year 2005 2010 2015 2020
Months &—October 20-November 18-November  12- September
Sensor Landsat ETM+ Landsat ETM+ Landsat OLI Sentinel 2

Study Area

The research location is in the Tabunio Watershed (DAS) which is located in Tanah Laut
Regency with an area of 62.558.56 ha which is geographically located at 3 © 372.72 "-3 °
51'5143" LS and 114 °36'12.02 "-114 ° 57'47.62" East Longitude. The Tabunio watershed
from upstream to downstream is a rural, urban, and coastal area with a distinctive
heterogeneous land cover, covering ten land cover classes, namely: settlements, plantations,
rice fields, bare land, mining, forest, swamps, shrubs, ponds, and water bodies. The Tabunio
watershed consists of 44 villages administratively, 4 sub-diffricts, and 10 sub-watersheds
(ecologically). The map of the Tabunio watershed research location is shown in Figure 1.
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Figure 1. Location of the study area in Tabunio Watershed

TM is Them@EE Mapper, ETM+ is Enhanced Thematic Mapper, and OLI is Operational Land
Imager. The maximum likelihood classification is calculated using the following discriminant
functions for each pixel.
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where i = class, x = n-dimensional data (where n is the number of bands), p(w;) = probability
that class mi occurs in the image and is assumed same for all classes, [}.il- determinant of the
covariance matrix of the data in a class, 3. "' = its inverse matrix, mi= mean vector of a class.

SVM algorithm finds a hyperplane to separate the database based on a pre-defined nurgfier of
categories (Mountrakis et al., 2011). SVMs approach is generally organized into four Kernel
functions: linear, polynomial, radial basis function (RBF), and sigmoid (Kavzoglu &
Colkesen, 2009; Lee et al., 2017). RBFs are more powerful kernels than others (linear,
polynomial, radial) and are used to achieve better results (Rimal et al., 2020). The following
are ‘hc equation of each Kernel functions used in SVM:

3
(i) Linear:K (x;, y;) = x{.x;
(i) Polynomial: K (x;,y;) = (g .x[.xj+7)%, g >0
(ii) Radial basis function: K (x;, y;) = e 9~ xi)z, g>0
(iv) Sigrgoid: K (x;,y;) = tanh (g .xf.xj +7r)
where g, d and, r are user-controlled parameters of kernel function

Training and Testing Sample Datasets

Training data (training and test samples) is drawn based on manual interpretation of the
Sentinel-2 and Landsat data series and available high-resolution imagery from Google Earth.
To collect training @mple data, the polygon generates tool in the ArcGIS 10.5 tgffbox is used
to create polygons for each land cover class. Due to the different polygon sizes, the number of
pixels for each land cover class is also different (Table 2).

57
Table 2. Training and testing sample sizes were?sed in this study.
Training sample (pixels) Testing sample (pixels)

Land Cover 3505 2010 2015 2020 2005 2010 2015 2020
Water body 354 450 348 403.335 406 124 86 159.505
Forest 259 56.082 17.044 8.996.502 314 38261 5.121 2455313
Bare land 21.804 19.716 4.643 6.723.879 22.193 10246 890  4.258.246
Residential 1.142 4.882 3.152 2.136.693 1.188 1.903 351 1.083.735
Plantation 893 31.736 37.881 19.184.554 937 14380 7.776 9.444.056
Agriculture 1.351 1.314 876 4.154.898  1.596 713 200 1.308.608
Swamp 16.741 334 370 148.135 17.183 145 66 16.405
Shrubs 204 251 532 133.906 251 88 134 50.072
Pond 166 330 73 43 405 322 194 18 45.559
Mining 724 3.159 2.182 330.744 738 2.565 279 172107

We took ten land cover categories, namely: water body, forest, bare land, residefgial,
plantations, agriculture, swamps, shrubs, pond, mining. A total of 86,345 sample points were
used for training and then tested for accuracy assessment. Training samples are often used for
accuracy assessments (Jensen, 1996; Sexton et al., 2013;oan & Pelletier, 2012). The
accuracy classifications were observed based on field survey data and high-resolution satellite
Pagery from Google Earth that was taken randomly for each land cover class. Furthermore,
overall accuracy (OA), user accuracy (UA), and manufacturer accuracy (PA) are calculated
and tested using the confusion matrix and Kappa coefficients.
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RESULT

Major transformations include an increase in housing and plantations and a sharp decline in
forests and shrubs. residential coverage in the study area increased by 1,382.18 hectares, (from
619.07 hectares in 2005 to 2,001.24 hectares in 2020) with an increase of 223.27%, while
plantations increased by 23,811.15 hectares, (from 502, 16 hectares) in 2005 to 24,313.31
hectares in 2020) with an increase of 474 .2%, while forests decreased by 3,056.79 hectares
(from 16,223.67 hectares to 13,166.88 hectares) while shrubs decrei$d by 9,630, 20 hectares
(from 10,846.53 acres to 1,216.33 acres) from 2005 to 2020. The historical changes in land
cover in the study area during 2005-2020 are shown in Figures 4a-d, Table 3 and Table 4.

(a)

LEGEND:
0 water Body
B Forest

N Bare Land
I Residential

Plantation
Agriculture

Swamp Pond
Shrubs Mining

Figure 2. Land cover map classified based on SVM approach a 2005; b 2010; ¢ 2015; d 2020

Table 3. Land Use/Land Cover Data in Tabunio Watershed 2005 — 2020

Land Use/Land Tahun
Cover 2005 (acres) 2010 (acres) 2015 (acres) 2020 (acres)
Water body 592,64 386,64 368,50 406,48
Forest 16.223 67 14.004 85 14.699,89 13.166 88
Bare land 3.71299 4.945 .80 13.247.55 790635
Residential 619,07 991,83 1.451,73 200124
Plantation 502,16 7.71081 20.866.44 2431331
Agriculture 21.02127 10.31342 8.366,95 1291727
Swamp 6.75952 3.818,56 161,37 181,88
Shrubs 10.846,53 17.042 34 1.695,94 121633
Pond 45,88 126,24 4796 36,14
Mining 2.172 66 3.155,88 1.590,04 350,50
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Table 4. Land use/land cover change between 2005 and 2020

Land Use/Land Cover 2005-2010 2010-2015 2015-2020 2005-2020

(acres) (acres) (acres) (acres)
Water body -206.00 -18.14 3798 -186,16
Forest 2218 82 69504 -153301 -3.056.79
Bare land 1.232.82 8.301.75 -5341.20 4.193.36
Residential 372,77 459,90 54951 1.382.18
Plantation 720865 13.155.63 344687 23811.15
Agriculture -10.707.86 -1.946.46 455032  -8.104,00
Swamp -2.94096 -3.657.19 20,50 -6.577.65
Shrubs 6.19582 -15.34640 -47962  -9.630.20
Pond 80,37 -78.28 -11,82 -9.73
Mining 08322 -1.56585 -1.23954 -1822.17

Accuracy Assessment and Comparisons

BEDorder to assess classification accuracy, there are many methods available in the literature.
The confusion matrix and the Kappa coefficient are affiyng the most popular. For several
decades, the Kappa coefficient has been rarely used in assessing the classification accuracy
of remote sensing data (Heydari & Mountrakis, 2018). One of the drawbacks of OA metrics
is the lack of performance classes that are specific to them. He and Garcia (Gautheron et al.,
2019) stated that if the input data (training sample) is not balanced, then the OA value could
be wrong because the last class will be classified very poorly. He and Garcia (Gautheronet al.,
2019) also suggest that when choosing OA as the criterion metric, the class distribution should
followed by those that occur naturally.

In this study, we used a stratiff g}l sampling approach; This approach fits well with OA
metrics. In addition, to compare the accuracy of each classification method, we used the same
training (input) and testing (validation) dataset; thus, the effect of individual class
distributions on OA does not bias the results. We also calculated the 95% confidence interval
(error tolerance) 8 of the probability estimates (Baraldi et al., 2006) for each OA. Since we
used the same test dataset for aff classification accuracy assessments, & did not differ
significantly. Therefore, to assess and compare the performance of different classifiers and
data sets, we used overall accuracy (OA) as the criterion.

In this study, the overall accuracy of the LULC classification achieved by using the S{f}1
classifier is 96.79% (2005), 92.7458% (2010), 90.93% (2015), and 86.20% (2020). The
overall classification accuracy of the alternative ML classifier is 94.79% (2005), 88.64%
(2010), 85.38% (2015), and 64.20% (2020). The SVM classifier received a higher OA than
the ML classifier across all classification years. SVM obtains a maximum accuracy of
96.79% and a minimum of 86.20%, while the ML classification ranges from a minimum of
64.20% in 2020 to a maximum of 94.79% in 2005. The average overall accuracy of SVM is
91.66% and ML 83.25%. The difference in OA between the two classifications shows that
SVM has a better accuracy of 10.8% compared to ML in determining the type of land cover.

The SVM classifier identifies all classes more accurately than the ML classifier (Figures 4,
5). For example, during 2005, the highest UA SVM in terms of Forest (99.56%) was seen,
while the ML classification for that year was relatively lower (60.5%). Likewise, the highest
SVM related to mining, swamps, deforested land, settlement were 98%, 97%, 96.5%, 95%,
and 94.5% respectively during 2005, 2010, 2015, and 2020. In contrast, ML classifier for
each class in the same year is as follows: 60.5%, 98%, 81%, and 87.56%.
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SVM vs ML User's Accuracy 2005 - 2020
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Figure 3. User’s accuracy assessment

SVM vs ML Producer’s Accuracy 2005 - 2020
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Figure 4. Producer’s accuracy assessment

ProducerProducer accuracy (PA) of the SVM classifier is also relatively higher than the
highest ML.PA classifier for SVM it was 99.98% for swamps in 2020, while ML was
92.45% for agriculture. PA ponds were found 83.0% in 2015, and forests remained the
highest (96.56%) in 2016. Again, 2020 was found to be important for Bare land (98.1%),
whereas PA SVM was found to be consistently dominant in 2005, 2015, and 2020. On the
other hand, ML was found to be 99.64% in 2005 and bare land was found to be 98.87% in
2005. The ML classification of sand areas for 2013 was 86.67%, and that the water body
for 2015 was 94.18 %. The PA yields for ML shrubs observed in 2005, 2010, and 2015 were
81.27%, 97.77%, and 94.65%. The highest UA and PA from SVM classifiers were most
seen in the bare land (Figs. 4 and 5), and the lowest UA from SVM was obser@ in housing
(84% during 2005) and the lowest PA SVM in Pond (75.56%) during 2005) in Table 5.
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Table 5. Producer’s Accuracy dan User’s Accuracy between SVM and ML

Land Use/Land 20056 2010 2015 2020
cover SVM ML SVM ML SVM ML SVM ML

(a) User's Accuracy

Water body 87,19 99 .64 5546 0.92 4977 8103 7924 2144
Forest 98,25 9956 9184 87.17 88,9 60.39 0
Bare land 96,13 08.87 8857 8108 98,1 8397 96,15 8502
Residential 95.3 87.24 7978 87.17 84.6 79.65 8537 4039
Plantation 56,86 7268 8668 0245 8932 90.96 0
Agriculture 84,65 98.1 875 57,14 24,55 6921 5306 4416
Swamp 9743 81,29 8608 7134 73,19 4022 99.77 361
Shrubs 81,27 2972 5827 54728 43,82 374 50,9 28,3
Pond 51,55 943 7207 5459 8,55 14,68 31,12 31,72
Mining 08,10 60 9863 73,15 78 27,63 67,17 4285
(b) Producer’s

Accuracy

Water body 87.84 9452 9108 1649 86,36 42,18 7495 5373
Forest 96,72 95,25 9367 8634 96,56 86.16 83.41 0
Bare land 08,28 97,76 9351 9 05 9592 78.16 66,19 7243
Residential 9292 94 9446 6201 73,15 552 85,17 6631
Plantation 87.09 9474 8521 96,01 8383 74.56 0
Agriculture 79.8 93,67 1,38 8608 46,01 5432 8754 9245
Swamp 99,36 91,7 5902 25 81,58 5071 0098 4444
Shrubs 70,59 91,36 5259 7454 46,85 77,5 53,72 8644
Pond 83 98 51 79 89 792 11,16 8643 2333 231
Mining 98.5 9452 6083 6906 29,17  69.86 809 7141

SVM = Support Vecor Machine, ML = Maximum Likelihood

DISCUSSION
SVM and ML are well-known methods for assessing the accuracy of land cover classification

in any area (Bray & Han, 2004; Srivastava et al., 2012). ML is a classical parametric
classification method used assuming multivariate normally distributed data (Kavzoglu &
Colkesen, 2009). In particular, SVM yields better accurate land cover classification due to its
nonparametric nature (Rimal et al., 2020; Thanh Noi & Kappas,2017; Vapnik & Chervonenkis,
2015). SVM reduces the misclassification of land cover from hidden information or controls
the level of certain misclassifications. SVM and ML are very popular in land cover
classification because they have higher accuracy comparﬂo other algorithms in identifying
land cover classes in watersheds and others (Bray & Han, 2004; Huang et al., 2002; Kavzoglu
& Colkesen, 2009; Schneider, 2012). However, (Campbell, 1981; Hin et al., 1980; Scholz
etal., 1979) argued that the selection of sample data (training data) is more important than the
selection of a classification algorithm to achieve a higher classification accuracy @thc
classified images. Accuracy assessment is an important stage and must be carried out in the
classification and mapping of land cover (Lin, 20@. Accuracy assessment refers to the
analysis process carried out to show the level of truth of a map or classification results (Foody,
2002). Accuracy assessments are carried out to assess map quality, evaluate various
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classification algorithms and identifgggrrors. The assessment and validation of land cover maps
provide a measure of data quality including overall accuracy, user accuracy, and producer
accuracy. In an assessmeggy high accuracy means that misclassification of land cover is low.
Producer accuracy states how well a certain area can be classified, and user accuracy ensures
that the pixels classified in the image exactly match the category in the field (Congalton, 1991).
Accuracy assessment is fundamental but challenging in the thematic mapping (Foody, 2002).

CONCLUSIONS

Higher user and producer a@iracy are obtained from the SVM classification method compared
to the ML classifier. SVM has proven to be effective in determining land cover classification,
especially on bare land. This is associated with higher accuracy ratings due to different
signatures. However, the different signatures of bare land also result in a higher accuracy of
the ML classification method. Of the ten total land cover classes, the highest accuracy of users
and producers is seen in bare land, while the accuracy of users and producers in pond classes
is lower. Based offfhe evidence obtained from our study, we recommend SVM as a suitable
option for proper land use/land cover classification, particularly in heterogeneous areas such
as watershed area.
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