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m‘sessmem of fat acid parameters (acid value, saponification value, ester value, iodine value, composition of
monounsaturated fatty acids, polyunsaturated fatty acids, and total unsaturated fatty acids) in edible oils, in-
cluding red fruit oil, delivers essential indices to guarantee their quality. This index also holds true for excipients
as well as for traditional medicines. NMR spectroscopy is an alternative tool to the L'unmiunal methods for the
determination of these quality parameters, offering attractive advantages. Here, the approach reported in the
literature based on the 'H NMR quantitative method is illustrated, highlighting the application procedure

strategy and suggested sample processing. Chemometric applications on 'H NMR spectra are also discussed.
Furthermore, this review can support the role of "H NMR and chemometrics in routine analysis for oil quality

control.

1. Introduction

Traditional medicine has been widely recognized and used as a
support or alternative to modern medicine as a therapy, especially for
degenerative diseases [1]. As is the case in Indonesia, around 24-32%
of the population in Indonesia consumes traditional medicines every
month, including urban and rural communities [2]. Hence the quality
assessment of such traditional medicines is of utmost importance. As a
representative, we have chosen the oil quality parameter determination
of Red Fruit 0il (RFO) being a terial for traditional medicine in
Papua, Indonesia, which is the oil extracted from red fruit (Pandanus
conoideus, Lam.).

Traditionally, Papuans use red fruit oil (RFO) to increase ener
strengthen the immune system. RFO contains active components
as phenols, carotenoids, tocopherols, and unsaturated fatty acids. The
reported characteristics of RFO differ from those of other Indonesian
vegetable oils, as coconut and palm oil. The composition of RFO is
dominated by saturated fatty acids (10-20%), monounsaturated fatty
acids (oleic) (60-70%), and polyunsaturated fatty acids (2-10%) [3.4].

The literature records some pharmacolo studies on RFO, as
demonstrated by Rohman and Windarsih [5]. Several studies have been
reported on the biological activities of RFO, including
tivity [6.7], antioxidants [8.9], and treating various degenerative

ICEr ac-

diseases SIEES arteriosclerosis, theumatoid arthritis, and stroke [10]
as well as HIV, malaria, cholesterol, and diabetes mellitus [11-13].

The quality requirement of RFO products is one of the critical fac-
tors in the sustainability of these products. The variants of raw mate-
rials from red fruit that vary due to geographical factors, harvest ti
and processing methods are the reasons for the potential differences in
the content of components of red fruit oil [14]. Subsequently, the dif-
ferences in red fruit types have been shown by Susanti et al [15]
(Fig. 1).

Therefore, quality assurance is required by regulation of the
Indonesian Food and Drug Authority and all food and drug authorities
in ASEAN countries to ensure that RFO products have standards that
qualify them as alternatives to traditional medicines or functional
foods. Some of the main quality parameters used for oil quality control
are commonly known as fat parameters, including the acid number,
saponification number, iodine number, ester number, and the compo-
sition of fatty acids. 43

Established methods for measuring acid value (AV), saponification
value (. d iodine value (IV) are volumetric methods (i.e., titration),
whereas for the determination of fatty acid components, gas chromato-
graphic methods are applied [16,17]. Unfortunately, the classical
methods have several drawbacks. Volumetric ones are usually visually
dependent and their accuracy can be compromised, for example, in the
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Fig. 1. Red fruit drupe of six red fruit clones (a) Edewewits done; (b) Menjib clone; (¢) Memeri clone; (d) Monsor clone; (e) Monsrus done; and (f) Mbarugum clone. [15].

case of highly colored samples as it is the case with RFO. Although the
introduction of technologies such as potentiometric endpoint determi-
nation significantly improved the methods, e are still some dis-
advantages: they are usually slow, require large sample sizes, large
amounts of organic solvents and hazardous chemicals, and need more
specificity. Regarding the gas chromatography (GC) method, an ester-
ification step to convert oil triglycerides to volatile fatty acid methyl
esters (FAME) still requires more lengthy procedures and time [18].

Alternative analytical techniques have been proposed for the de-
termination of the classical oil quality parameters (AV, SV, IV, and fatty
acid composition), including potentiometry [19], GC [20,21], HPLC
[18,22], FTIR [23-27], and electrophoresis [28,29]. In addition,
quantitative NMR. (gNMR) spec y methods [30-35] are also in-
creasing in popularity. The QqNMR method has the advantage of being a

destructive, non-invasive method, allows for a relatively fast
sample preparation, and can provide the composition of the sample
mixture in one single spectrum. B

Due to physics of NMR spectroscopy, the integral of a signal is di-
rectly proportional to the corresponding number of nuclei [36], making
molar concentration directly accessible. Hence, NMR has become pro-
minent as fatty acid characterization technique, obtaining and
predi omposition and the ratio of fatty acids contained in oils
based on the profiles of the different acyl groups. In addition, the NMR
method has also proven helpful for classifying edible oils, monitoring
the occurrence of hydrolysis, oxidation, or deterioration processes, and
detecting oil adulteration [37-39].

In addition, to support the potential of the described NMR tech-
nique, some authors also use chemometric methods combiféal with
NMER [40-43]. The primary purpose of using chemometrics is to reduce
the amount of NMR data, achieve better visualization of the system, and
emphasize the differences and similarities of the samples. Kowalski and
Reilly [44] first introduced the combination of both methods. Fur-
thermore, this combination has been actively used for analyzing bio-
logical and pharmaceutical matrices since the 1990s [45,46]. Mean-
while, the first comprehensive review dedicated to oil analysis was
published in the early 2003s [47].

Therefore, the purpose of the review is to describe the applicability
of gNMR and chemometrics to assess the quality of oils and in particular
of RFO. We will discuss the NMR experimental procedures, emphasizing

on spectral processing and data analysis, and compare them with results
V, EV, IV, and SV determination with regard to the composition of
monounsaturated fatty acids (MUFA), polyunsaturated fatty acids
(PUFA), and total unsaturated fatty acids (Total UFA). At the same time,
applying chemometrics on proton NMR spectra data for visualizing
grouping oil quality differences also were discussed.

2. NMR practical considerations

The use of NMR in analytical evaluation, especially in determining
oil parameters (AV, SV, IV, MUFA, PUFA, and Total UFA composition),
aims to simplify the preparation and analysis procedures, for example,
without extraction, derivatization, or sample separation. Because each
specific oil product will contain component species in different con-
centrations, any concentration differences must be detected precisely.
Therefore, the gNMR techniques can be used to evaluate all parameters,
provided the spectrometer has specific performance characteristics.

One of the critical keys is the magnetic field strength, as signal se-
paration is proportional to the magnetic field strength. In addition,
NMR is intrinsically known as a method with low sensitivity. This
disadvantage can be partially overcome by using high magnetic field
instruments [48]. However, in oil quality assessment, low sensitivity is
not a problem as oil components are usually present in sufficient con-
centrations. Nevertheless, a higher field strength [31,49,50] provides a
better resolution, and thus relatively little signal overlap. Most studies
use medium strength and the 300-400 MHz magnetic field shows sa-
tisfactory results [32,33,35].

2.1. Parameter acquisition

For quantitative NMR. measurements, some parameters have to be
considered and, if needed, to be adopted. Holzgrabe [36], Bharti, and
Roy [51] generally discussed in detail all the essential parameters to be
considered in the gNMR experiment. Furthermore, in this context, some
decisive parameters are briefly summarized and commented, particu-
larly on oil applications.

Temperature. The temperature during the experiment is essential
with regard to the reproducibility of the quantitative results. Thus, the
temperature must be kept constant throughout the study. Furthermore,
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temperature variations can affect the relaxation properties of mole-
cules, including air temperature flow which must also be kept constant
and stable during the acquisition time because it can cause "wobble"
artifacts in the baseline of strong signals at high flow rates [51]. On the
other hand, Holzgrabe [36] also described temperature settings as
having a significant impact on the resolution of the spectra. In parti-
cular, settings at higher temperatures can induce an upfield shift of the
HOD signal. Therefore, in the case of oil applications, maintaining a
controlled and constant temperature of 20-30°C is recommended to
obtain optimal molecular relaxation and decent signal resolution
[35,39,52].

Pulse width. Most usable pulse angles are between 30° to 90" in
spectrum recording. A 90° pulse gives the maximum signal intensity,
but in practice, pulse widths less than 90° are more often used to obtain
good gNMR data in a reasonable time [53]. Furthermore, the uni-
formity of pulse width usage during measurement is a significant con-
cem. Hence, during the majority of oil applications, 30" pulses are more
widely used with complete relaxation of resonance in a shorter ex-
periment time [35,52].

Repetition time. Repetition time is the total time spent acquiring a
single scan spectrum, which is obtained from the sum of the relaxation
delay and the acquisition time required. [t is an essential parameter for
quantitative purposes and plays mjcial role in obtaining accurate
integration. Since the repetition time depends on the longest long-
itudinal relaxation time T1 of the signal considered to reach more than
99% equilibrium, the repetition time is generally required to be five
times the longest TI value [36]. In this context, the relaxation delay
depends on 1 relaxation time in the triglyceride molecule which
also applies to the methylene proton of the glyceryl group. Further-
more, the relaxation delay time also considers T1 of the internal stan-
dard (IS) used [36].

Determination of T1. The inversion recovery pulse sequence
method is a commonly used method for determining T1 [36,54], as was
performed by Triyasmono et al. [35] on RFO (Fig. 2). As described by
Holzgrabe [36], the IS signal applied should also be considered, as
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many IS are often characterized by long T1 times; for example, the
standard compound 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB) ob-
tained a T1 of 10.7 s, while dimethyl sulfone (DMS02) has a T1 of 2.7 5,
as n by Skiera et al. [32] and Triyasmono et al. [35], respectively.

Number of scans. The number of scans is one of the parameters
highly dependent on the sample concentration and is governed by the
desired S/N ratio and the LOQ to be achieved. This parameter also
changes most frequently during NMR experiments. For quantitative
purposes with accuracy and precision better 1%, the S/N ratio
should be 1:250 [36]. On the other hand, the increase in S io is
proportional to the square root of the number of scans, so the increase
in 5/N ratio will affect the time consumption, especially for analytes
which are present in low concentrations. However, for oil analysis ap-
plications, the recommended number of scans between 32 and 128
shows good accuracy and precision values within a reasonable time
[32,34,35] because centration is not an issue.

Spectral width. The spectral width (SW) parameter determines the
size of the observed frequency window. As reported by Monakhova and
Diehl [55], an SW of more than 3.0 ppm is recommended. A too narrow
SW =1.8-25ppm can cause spectrum intensity disturbances, espe-
cially at the edge of the spectrum, distorted baselines, and folded sig-
nals; so it will have a negative impact on the desired signal integration
process. Usually, in standard experimental setups, a suitable SW is set as
the default value (20-30 ppm) so this parameter is mostly kept in gNMR
experiments, including for oil applications [32,35].

Frequency offset. In addition to the spectral width parameter, the
transmitter (frequency) offset (O1P) is also a critical interrelated
parameter. For gNMR, the O1P parameter can also produce other bias
factors. This parameter determines the center point of the spectrum. For
SW 30.00 ppm, O1P values generally vary between 5 and 8ppm
[51,53]. When the excitation pulse is in the middle of the desired
spectral window, the relative purity will reach its maximum value [55].
It is also applied for most of the oil samples [32,35]. 67

Receiver gain. Furthermore, to maximize the ability to obtain the
right signal-to-noise ratio, the selection of the receiver gain value is also
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Fig. 2. 400 MHz "H NMR; an inversion-recovery pulse sequence of experiments used to measure the values of T1 for the protons of RFO in CDCly: DMSO-d; (5:1, v/

v), a 90° flip angle-T-90° pulse sequence was applied [35].
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Fig. 3. Effect of receiver gain setting on the FID and the resulting 1D 'H spectrum of 10%(v/v) 2-butanol in D,O at 400 MHz. The FIDs (left column) and their
corresponding NMR spectra (right column) are displayed with the same scaling. (a) receiver gain set too low leading to a very small (poorly digitized) FID and small
NMR peaks, (b) receiver gain set to optimum leading to a large well digitized FID and large undistorted NMR peaks, and (c) receiver set too high leading to a
“clipped” FID and with distorted NMR peaks and baseline [56]; thanks to the authors providing the figure.
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fundamental. According to Torres et al. [56], the receiver gain (RG) should
not be too high, otherwise it will be “clipped” e large signal (Fig. 3).

This means that the most powerful early part of the Free Induction
Dec (FID) will be truncated because it is beyond the capabilities of
the analog-to-digital converter. In short, FID will have a rectangular-
like signal profile resulting in a difference rather than the usual ex-
ponential decay. Data from Triyasmono et al. [35 ] show that RG in the
range of 4-5 gives the optimal §/N value (S/N > 1000).

2.2, Sample preparation

The sample prmation is relatively simple because a certain
amount of oil or fat has to be dissolved in a suitable deuterated solvent
in specific proportions only. Deuterated chloroform (CDCls) is most
commonly used as a solvent [34,37.57], as well as DMSO-d, [38,39],
and a mixture of both (DMSO-dg with CDCly) [34,41,58]. As discussed
by Holzgrabe [36], Bharti and Roy [51], the assignment of baseline
separated and unambiguous signals is an absolute prerequisite for
quantitative NMR techniques. Therefore, Skiera et al. [32] and Hafer

et al. [34] used solvent mixtulawhich guarantee signal separation. In
addition, for the RFO sample a mixture of CDCly:DMSO-dg (5:1, v/v)
was applied which gave clear results for the presence of a specific
proton from the methylene group a-CH; at § = 2.37-2.20 ppm |[35].
The beneficial effect of adding DMSO-ds to CDCl; is due to the for-
mation of NMR complexes between DMSO and fatty acid groups
[59,60].

2.3. 'H Spectral assignment
55

The 'H NMR spectrum of RFO is shown in Fig. 4, the assignment of
the spectra of RFO was performed according to previous literature
[61-63] on oil analysis.

As discussed by Ravaglia et al. [64], the addition of standards of
olive oil can assist in confirming signal assignment in the spiked spectra
[41,48]. This method has been used to assign the full proton spectrum
of RFO. Palmitic and oleic acid standards were added to the RFO [35].
As can be seen in Fig. 5, the addition of both standard substances is
proven by the regression data showing an increase in the integration
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Fig. 4. a Representative structures of triacylglyceride (TAG) and free fatty acid (FFA) and b 'H NMR spectrum of RFO dissolved in a mixture of CDCl; and DMSO-d,
(5:1 v/v) containing TMS 0.1% with enlargement signal at § = 2.20-2.37 ppm (are labeled by F1 and F2) [35].
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Table 1
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Chemical shift assignment of the 'H NMR signals of the main components of RFO [35].

Signal Functional group Chemical shift (ppm)
TAG FFA

A (-CH4) saturated, oleic and linoleic acyl chains 0.93-0.83 0.93-0.83
a (-CH4) linolenic acyl chains 1.03-093 1.03-0.93
B (- -) methylene groups 1.42-1.22 1.42-1.22
C [: CHz-CHagl i-methylene protons 1.70-1.52 1.70-1.52
D (-CH,-CH= Iyl methylene protons 2.14-1.94 214-1.94
E (~CH,0COR) methylene protons in the glyceryl group 4.32-4.10 -
F1 - H,-) a-methylene protons - 227-2.20
F2 - H,-) a-methylene protons 2.37-2.27 -
H ( H,-CH =) divinyl methylene protons 2.84-270 284-2.70

(-CHOCOR) methine proton at C2 of glyceride 5.26-5.20 5.26-5.20
I (-CH = CH-) olefinic protons 5.37-527 5.37-5.27

value of the corresponding signal and the correlated fat value para-
meter.

In Table 1, the assignment of proton signals of all compounds is
reported.

2.4. Post-processing parameters

For reliable quantification results, each NMR spectrum generated
must be processed considering post-processing parameters including
referencing chemical shift (previously described), phasing, baseline
correction, and integration. For example, Emwas et al. [65] illustrate
the influence of post-processing parameters in Fig. 6.

Phase correction. The first step is phase correction; the signal
phase must be precise to get an accurate intensity measurement. If an
error occurs while phasing, it will result in a significant error in the
measurement of the peak ratio, and thus, it will be also correlated to the
error in the absolute or relative concentration of the gNMR compound.
Often manual phase correction is preferable to automatic phase cor-
rection because small signals could be distorted. This demonstrates that
anegative deviation of the x% signal can produce an area error of 2x%
compared to other signals. Therefore, the application of manual phase
correction will increase optimal precision [65].

Baseline correction. The second step is the baseline correction;
automatic baseline correction is generally performed, but it is never-
theless necessary to look at the resulting spectral profile. There is a
number of algorithms built into the NMR analysis software that can be
selected to facilitate the process of correcting the baseline so that ac-
curate calculations are obtained [65]. As for processing tra of
the RFO sample using the ABSG polynomial [35], a narrow full width at
half maximum value (FWHM) is obtained for the selected signal [66].

Integration. The third step is integration. This step is one of the
most crucial steps in gNMR analysis. The integral area range, slope, and
bias greatly influence the quantitative accuracy as the integration
should be obtained over 99% of the total signal area. Monakhova and
Diehl [55] suggest integrating 64 x FWHM to obtain high accuracy. All
signals should be harmonized for area range, slope setting, and bias
included or excluded, e.g., all integrals are measured over a range of
+ /- 5Hz around each signal. Setting manual integration parameters
and selecting the "exact coordinates integrated area’ is regarded as a
reliable integration process [35].

Since integrals are very sensitive to baseline differences, the baseline
correction should be done very carefully to minimize biases and errors.
Therefore, performing 5-10x integrations per spectrum to obtain an average
of all values to reduce analysis errors is highly recommended [65].

2.5. Quantification method

Quantitative techniques with NMR include two main types, namely:
relative methods, which are commonly used in quantitative NMR

[67,68], and absolute methods using internal standards which are
gaining popularity [32,35,69]. TE]uantiﬁcaﬁon technique requires
standard compounds to calculate the concentr: of the analyte. The
internal standard selected for measurement must be available in a
hig ure form, be relatively inexpensive, stable, inert, nonvolatile,
and be available in a non-hygroscopic form and soluble in the solvent
used. The signals from the standard compounds must be completely
separated from the signals of the analyte and should preferably be a
singlet. Furthermore, the relaxation time is relatively short so that the
measurement time does not increase, which will reduce the effective-
ness and efficiency of the method in terms of time [36,70]. In the same
solvent mixture (CDCly:DMSO-dg (5:1 v/ iera et al. [32] used
TCNB as the standard compound with a singlet proton signal at
7.70 , whereas Triyasmono et al. [35] used DMSO, as a standard
with a singlet proton signal at 2.90 ppm.

n the basis of their use, reference compounds can be classified as
internal and external standards. In this context, we provide a particular
review of internal standard quantification techniques. The internal
standard procedure is carried out with a known concentration or
weighted amount of a reference compound dissolved in a known vo-
mge of analyte solution for quantitative estimation, as shown in Fig. 7.
The most critical conditions for an intemal standard are its solubility
and chemical interaction with the analyte.

Subsequently, the quantification of each sample's quality parameter
aue is directly calculated from the integral of the selected NMRE signal,
together with the initial weight of the sample and reference compound,
molecular mass, and the number of protons which contribute to the
respective signal and certified purity of the reference compound, as

n in the following formula [36]:

n Lig Ny Mgy m 1)

where, [, N, M, W and P are integral area, number of nuclei, molar mass,
gravimetric weight and purity of analyte (x) and standard (std), re-
spectively.

Skiera et al. [32] and Triyasmono et al. [35] developed the quan-
tification method in relation to the calculation of oil quality parameters
with the modification of the above formula.

3. Application to RFO quality control
78

According to the compendial method, the chemical characteristics
of edible fats and oils can be determined by measuring the AV, SV, EV,
and IV using titrations, whereas the determination of MUFA, PUFA, and
total UFA con done by using Gas Chromatography. This value
also determines the shelf§EElquality and therefore influences the eco-
nomic value of the oil. On the other hand, Skiera et al. [32] and
Triyasmono et al. [ 35] demonstrated that several fat parameters can be
assessed by gNMR using an internal standard, including:
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The 'H NMR spectrum of the RFO in the solvent mixture of
CDCly;:DMSO-dg, allows directly obtaining this information; this value
was obtained from the assessment of the integral of methylene alpha
signal (a-CH,_,.4) resonance at § = 2.20-2.27 ppm (F1), see Fig. 3. The
pattern of signals obtained from different RFO products showed dif-
ferent intensities. This signal assignment has also been confirmed by
hydrolysis experiments [35]. Furthermore, with the intemal standard

Selection of
system

High-precision

- weighing

mp Dissolving

=

method described above, the calculation of the AV value can be ob-
tained using the following formula:

Mgon Mpmsoz-Pomsor Nomsoa le-CHa (acie) (2.27-2.20ppm)

AVy
N N.(2) Tousoa(2.98ppm)

1000

mg Mpusos

B. i

According to Skiera et al. [32], the AV of rapeseed oil determined

by integrating the COOH signal at § = 11.4ppm and TCNB signal at
& = 7.70 ppm and AV NMR in mg KOH/g calculated based on [q. 3:

aNMR
experiment

Data Processing +
Calculation

+

Internal standard

AN a VRN / h

Fig. 7. General procedure of a qNMR experiment using an internal standard with modification and according to Sigma-Aldrich [711.

7
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Statistics F-test, Student's t-test, and RSD results for fcmualiry parameters of RFO calculated from qNMR method versus titration method [35].

Parameter F-Test F-critical value P(T = =t) one-tail t critical one-tail P(T = =t) two-ail t critical two-tail RSD (%)
5V 0.47 165 0.47 166 0.94 1.99 1.74
AV 0.47 0.47 0.93 1.65
EV 0.48 0.44 0.89 2.15
v 0.50 0.46 0.2 0.90

AVios = Mgon Mrcne-Prene Nrewe Icoon 1000
mg Mreve  No(2) Irowe (3)
Unfortunately, the COOH singlet signal (§ = 10-11 ppm) does not
always appear clearly in every oil spectrum. As described by Skiera
et al. [32], since carboxyl groups are protic groups, their presence is
strongly influenced by other protic groups in the sample solution (e.g.,
oil matrix components or the presence of impurities from the solvent).
The rapid proton exchange process in the pure CDCl, solvent can cause
the COOH signal line to broaden; it is not clearly visible with a low 5/N
ratio (insensitive for guantification). It can also be affected by the
presence of alcohol groups in the sample solution, leading towards a
substantial broadening of the COOH signal. Even using CDClg:D@d.s
as a solvent (5:1, v/v), the COOH signal remains invisible clearly due to
the high amount of alcohol groups in the sample solution, as shown for
castor oil. On the other hand, it can also be naturally influenced by less
FFA content, as found in the spectrum of repressed oil [32].

3.2, Saponification value

As with the determination of the AV, the 'H NMR spectrum of RFO
(Fig. 4) makes it possible to directly calculate the SV value; this value
was obtained from the integral of the resonance of the methylene alpha
(0-CHy ) at § = 2.20-2.37 ppm (F1 and F2) which correlates with
the structure of triglycerides and free fatty acids. Furthermore, SV can
be calculated using the following formula [35]:

Mgon Momsoz.Pomsoy Nomsor La—cha o (237-2.20ppm)

SVipur =
e N:(2) Ipmso2(2.98ppm)

1000

mg Monmsoz

(3)

Skiera et al. [32] succeeded in demonstrating a quantitative NMR

method with internal standards for determining SV in which the in-

tegrated methylene alpha proton signal is the same as the one used by

Triyasmono et al. [35]. Only the signal of a different standard substance
was used for comparison. The calculation formula used is as follows:

M Myeng-Prone Nrone la-Carbonyl—cH2
SViaug = kon Mrcns-Prove Neows ny! - 1000

m; Mrcne N:(2) Ircng (4)

3.3. Ester value

According to the results of 'H NMR spectra of RFO obtained by
Triyasmono et al. [35], the F2 signal (Fig. 4) can be assigned to the
alpha methylene proton (a-CH. TAG) adjacent to the triacylglycerol
carbonyl. This approach was also checked by the hydrolysis step and
compared with the findings of Nieva et al. [37]. Therefore, the EV can
also be calculated through the RFO spectra using the formula:

Mgon Mpmsos-Pomso: Nomsoa le-cnz gesien(2.37-2.27ppm)

EVimr =

my Momsoz N, (2) Ipmso(2.98ppm)
(5)
3.4. lodine value

The IV is one of tlal quality parameters used to evaluate the
degree of unsaturation. From the 'H NMR spectra, as shown in Fig. 3, IV
can also be determined directly, using the diagnostic signal of the

resonance at § = 5.27-5.37 ppm, which correlates with -CH=CH- in
unsaturated fatty acids. IV can also be calculated using the formula:

Vorre = My mMpmsos Pomso: Nomso: |-cu=cu-(5.37-5.27ppm)
NMR = —

. 100
N, (2) Ipmso:(2.98ppm)

mg Mpusos

3.5. Polyunsaturated fatty acid, monounsaturated fatty acid, and total
unsaturated fatty acid

(6)

Recent developments related to the determination of MUFA, PUFA,
and Total UFA that can also be determined by NMR spectra. The cor-
responding signal assignment for the determination of unsaturated fatty
acid values was adopted from Hama et al. [33], namely, the signal at
&§ = 2.80-2.71 ppm, which correlates with the bis-allylic proton (= CH-
CH;-CH=) of PUFA; the integration of this signal can be used for
quantification of PUFA wvalues. The signal integration at
§ = 2.10-1.90 ppm, associated with methylene allylic protons (-CHa-
CH=CH-), can be used to calculate the Total UFA value. Furthermore,
by adopting the previous equation, the values of PUFA, Total UFA, and
MUFA can be calculated using the following formula:

Mpupa MonsorPomsos Nowmsoa 10H2wsalylie)(2.80-2.71ppm)

PUFA = 100%
. m; Mpnsoz Ni(2) Inmsoz(2.98ppm)
(5)
1
TotalUF Ay = Mrowiura Momsoz Pomsoz Nomsoz 2 Tenzgaiyic) (2.10-1.90ppm) .
g Momson Na(2) Inmsoal 298ppm)
(6)
MUFAyr = Total UFAy,y - PUFA, (7)

The benefit obtained from the use of this quantification technique
using NMR is that all of these parameters can be determined simulta-
neously because one proton NME measurement will produce all cor-
responding NMR spectral profiles. Therefore, the analyst can carry out
the determination process of the quality parameter value in a single
experiment, confirming that gNMR using the standard internal method
is relatively effective and efficient in RFO quality control.

Furthermore, parison method is required by testing the same
sample using the standard method to show the accuracy of the NMR
method measurements obtained. For example, Triyasmono et al. [35]
have compared the results of determining the AV, IV, 5V, and EV values
using the NMR method and the standard method (titration); both
methods show comparable results on each sample after being tested
with t-test and F-test statistics (Table 2). Both methods have the same
pneciion.

1

4. Chemometric methods in NMR spectroscopic analysis of RFO

In gernl, chemometrics is defined as a scientific discipline that
combines mathematical, statistical, and other methods based on formal
logic for modeling and selecting optimal methods and experimental
designs, as well as extracting important information in multivariate
data analysis [72]. Chemometrics has become a primadonna worldwide
as a data analysis technique, especially in combination with spectro-
scopy during the last decade [73]. This condition cannot be unlinked
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from the development of high-tech and more sophisticated hardware
and the ability easure large amounts of repeated data.

Monakhova et al. [74] published a review on the application of
combined chemometric algorithms to NMR spectral data, especially for
food samples, where the usefulness of various chemometric algorithms
is discussed, along with examples of their application. These techniques
can generally be grouped according to the practical objectives to be
achieved [75 Inirst, the principal component analysis (PCA) can sim-

lifty complex and massive multi-data and search for a group of hidden
aluences [76]. Second, the classification and discrimination methods
can be divided into classification without training and classification
with training in the next step, in which the partial least squares (PLS) is
an example of a type of this second group. The application of the d
method is preferable because in this case, a training sample set with
known a priori information about its classification is used [73].

On the other hand, NMR spectroscopy itself and NMR analysis of the
components of complex food/oil mixtures are not trivial. As explained
above, the proton NMR sample spectra uce intensity positions and
signal widths which are influenced by the type of mixed components
present in the sample, the corresponding spin-coupling patterns, and
various other samy ameters [36]. NMR settings and processing
parameters can also have a significant impact on the quality of the NMR
spectrum and subsequent interpretation [65,66]. Several strategies for
handling and processing sample spectra are widely discussed. However,
there still is relatively little consensus on what to do after NMR spectra
have been collected, i.e., postprocessing steps, particularly for chemo-
metric follow-up analysis [74]. Therefore, several types of software
were developed for deconvoluting NMR spectra, using statistical ap-
proaches to the alignment of multiple NMR spectra, to scale or nor-
malize aligned spectra, and then to identify spectral regions of interest
(e.g., binning) or signals that differentiate cases from control [77].

In this context, Fig. & shows an outline of the NMR data processing
steps referring to the spectral processing, post-processing, and analysis
data carried out as applied by Triyasmono et al. [43] to RFO samples.

In spectra [Aslessing, several algorithms are used. One of them is
the Bucketing technique. The operation of this technique is to reduce
data and group the divided spectral spectra into equally spaced win-
dows, called bins, or buckets, whose width usually ranges empirically
between 0.005 and 0.05ppm, consistent with typical spectra obtained
[78]. Therefore, a new smaller set of variables is generated with in-
tensities remaining the same as the original spectru the new
variables are the result of summing the intensities with the area under
each region used as individual intensities.

Furthermore, the width of the bucket is also adjusted to cover the
variability of chemical shifts around the signal, so the problem of
misalignment tends to be overcome [77]. Lachenmeier et al. [78] also
suggested this strategy to generate a matrix consisting of integrals,
which can be further analyzed with the help of chemometric methods.
Likewise, Triyasmono et al. [43] used an alignment strategy with
0.009 ppm bucketing to obtain a sample spectral matrix sufficient for
chemometric analysis, as shown in Fig. 9.

At the same time, this metfgdd is effective in terms of time con-
sumption while maintaining the fine structure of the spectrum.
However, the disadvantage of such a method is that a stable signal at
the chemical shift scale in the ‘mi spectrum is required. Despite this,
it is fact that binning/bucketing is the most successful and frequently
used method of choice for the pretreatment of experimental NMR
spectroscopy data [43,75-80]. Therefore, subsequent stati ana-
lyses are always carried out on a bucket basis rather than by direct use
of individual intensities or integrals. This is a basic special feature of the
chemometric approach to NMR spectral treatment.

It should be noted that the majority of NMR signal intensities in
different regions of the spectrum can B different, as explained by
Monakhova et al. [74]. The construction of models for different regions
of the spectrum and the subs search for optimal models is a
common practice. In addition, the internal standard signal is negligible
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because random changes in the concentration of these compounds have
no effect on the analytical results.

Moreover, any statistical procedure suitable for generating product
groupings according to specific criteria should be performed after
proper variable selection. In the context of RFO sample analysis, the
selection of correlated signals for each oil quality parameter has been
determined [54]. Furthermore, a bucketing algorithm is used to gen-
erate an adequate variable matrix for data pre-processing. After ob-
taining an appropriate matrix, the Principle Component Analysis (PCA)
technique is applied for grouping the samples.

PCA is a statistical technique wid for analyzing large mul-
tidimensional data sets such as the NMR spectral data point. This
technique can identify the direction of the most significant variation in
the data via principal components (P1;P2;...) and represent the data in a
coordinate system determined by the PCs [76].

The application of PCA for quantization in spectral discrimination is
entirely analogous: suppose that in the case of RFO spectra, coherent
types of variation in the spectral dataset include the amplitude of a
fixed line shape, then the first PC identifies this shape, regardless of
whether it is Lorentzian, Gaussian, or a more complex shape.
Furthermore, higher-order PC shapes will also indicate the type of
variation (other than amplitude) in the data, including frequency and/
or chemical shifts as well as linewidth variations. Therefore, the entire
spectral data set can be approximated by a projection of data points
along P1 (called a score) with minimal loss of information [76].

Consequently, PCA is suitable for data sets containing spectra ac-
quired under the same conditions-same instrument, same acquisition
parameters (e.g. number of points in FID, spectral bandwidth, satura-
tion pulses, decoupling) to avoid analysis interference.

In the case of most oil analyses, PCA applied to NMR spectra is used
to find classes or groupings of classes that have the same object in
common. For example; grouping based on geographical position and
authentication and presence of adulterants [40-42.64]. Triyasmono
et al. [43] demonstrated PCA to visualize grouping the quality of RFO
based on two main parameters, namely, the degree of unsaturation
using 13 matrix variables signals at § = 5.27-5.37 ppm and the FFA
value using 18 matrix variables signal at § = 2.20-2.37 ppm, as shown
in Fig. 10.

According to the results of the PCA plots above, there are differences
in the group visualization of the RFO products analyzed using NMR
based on the categories used. For example, in Fig. 10A, the RFO pro-
ducts are distributed in each PC and divided into six groups of the
degree of unsaturation values, respectively. In Fig. 10B, RFO products
are scattered along the PC, which can be differentiated into seven

ps of FFA values, respectively. Thus, the PCA algorithm applied to
the 'H NMR spectra of a sample can be an effective alternative solution
in determining the quality of an oil.

As discussed earlier, PCA including exploratory analysis is the first
and fundamental step in processing chemometric data. In some cases, it
may be the only approach required to characterize the sample under
investigation. However, due to the limitations of its unsupervised
method, to support and provide solutions that occur more frequently in
quality control practices, it is necessary not only to rely on qualitative
control but also to provide quantitative estimates [75]. Therefore, PLS
regression [81-83] was proposed as an alternative method to calculate
a reliable multivariate calibration model.

Briefly, as discussed by Biancolillo and Marini [73], the PLS tech-
nique is based on extracting a set of T scores by projecting a block X on
the latent variable subspace, which is relevant for calibration issues. In
PLS, the latent variable (that is, ection to where the data are
projected) is defined in such a way that maximizes the covariance be-
tween the score and the fit response(s): maximizing the covariance
makes it possible to obtain a score which at the same time describes the
relevant part @y X's variance and correlates with the response Y. In
simple terms, in the PLS method, the simultaneous decomposition of
two matrices is performed: an analytical signal matrix (X) and a matrix
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Fig. 8. Summary of spectral processing, post-processing, and analysis data steps on RFO NMR-spectra with modification and permission from Emwas et al. [65].

of corresponding chemical indices (Y). Furthermore, Masili et al. [84]
demonstrated the success of NMR and PLS mocﬂg in the physico-
chemical characterization test of 64 pure crude oil samples obtained
from 28 different extraction fields with the majority of the coefficient of
determination not less than 0.85 and a relatively low standard error.
In preparing the calibration and prediction sets, most of the sample

proportion divided into 70:30 adherm the Kennard-Stone algorithm
[41,85]. However, at the same time, the number of samples available to
create a calibration model is usually limited due to the cost of analysis
and/or sample availability. Therefore, the number of calibration sam-
ples is often much lower than the number of variables used for pre-
diction. As discussed by Kvalheim et al. [86], using a Monte Carlo

537 536 5.6 5365 534 533 532 531 530 520 528 527 527
Chemical st {ppem)

U5 10 23 20 8 1% M am

Chenicl s pr)

Y s

g

6.70 6.32 5.94 5.56 5.18 4.81 443 4.05 3.67 3.292.92 2.54 2.16 1.78 1.40 1.03 0.65 0.27
Chemical shift (ppm)

Fig. 9. Reduced of bucketing 'H NMR spectra of all RFO samples with an enlarged spectral range of § = 5.37-5.27 ppm and § = 2.37-2.20 ppm. The spectra are

color-coded according to the brand. [43].
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Fig. 10. Plot scores of all samples (120 spectra) on the main components PC1 and PC2 on the selected signal 1HNMR spectra based on the degree of unsaturation (A)
and the FFA value category with modification and permission from Triyasmono et.al [43].

moach [87], two methods were developed and compared to select
the optimal number of PLS components which is defined as the number
where no statistically significant increase in prediction error is observed
when additional components are introduced into the model. Both
methods define probability measures and give similar results for model
selection in this application. As applied by Triyasmono et al. [43] on
RFO spectra samples, PLS model with a composition of calibration and
prediction ratio close to 50:50 still gives a relatively small error value
(= 4%).

In addition, the comparison of NMR spectroscopy results with data
obtained by other spectroscopic methods is also interesting. For ex-
ample, the PLS model to determine the quality parameters of RFO
(unsaturated degree and FFA) is built based on its @&H spectrum.
However, the R values for independent assay sets (0.83 and 0.94) and
root mean square errors of (5.50 and 5.10), respectively, were much
lower than those for NMR spectroscopy [43]. This is probably due to
the much more significant amount of spectroscopic ctural) in-
formation obtained from the NMR spectrum rather than in the IR range
[74]. Thus, although NMR spectroscopy is relatively ex e and the
measurement time is longer (about 15 min, compared to 2min for IR
spectroscopy), we believe that NMR spectroscopy provides more reli-
able guantitative analytical results and is a highly efficient technique,
as in Table 3.

On the other hand, Giese et al. [52] reported that the results of cod
liver oil authentication using NMR and FTIR spectra combined with
artificial neural n s algorithms showed that the detection limit of
FTIR was lower (0.22%) with a root mean square error of predict
(RMSEP) of 0.86% than '"H NMR (3.0%) and '°C NMR (1.8%) with
EMSEP 2.7% and 1 respectively. However, the comparison of the
3¢ NMR and FTIR models yielded the highest accuracy with 100% of
correct classification in a series of calibrations, tests, and validations. In
addition, they s that the *H NMR signal is essential for one of the
counterfeitings of cod liver oil predictions that can be identified by
analyzing its PLS factor loading. 73

Furthermore, to meet the quality and reliability of the investigated
model, it is necessary to carry out a validation process with an

Table 3

appropriate diagnostic definition, most of which is based on residual
calculations [75]. In this context, to avoid over-optimism and to get a
fair estimate as much as possible, it is necessary to calculate the errors
from different data sets, which is generally referred to as cross-valida-
tion [29]. On the other hand, cross-validation can be based on repeated
resam plin; ining and test data sets. Cross-validation, in particular,
is suitable when the number of samples available is small and there is
no possibility of constructing an external test set. However, the po-
ﬁi’;}l for bias can still occur as calibration and validation are not
completely independent of one another [90]. Nevertheless, cross-vali-
dation can still be effectively to estimate the optimal values of the
model meta-parameters (e.g.the number of hidden variables in PLS
regression or PLSDA classification) [£89,91].

5. Conclusion

Some of the descriptions outlined in this perspective indicate that
the quantitative '"H NMR method using internal standards is able to
directly and simultaneously assess several oil quality parameters (AV,
EV, IV, SV, n the composition of MUFA, PUFA, and Total UFA). In
addition, the combination of 'H NMR spectroscopy and chemometrics is
a reliable tool for the routine analysis of oil products, including RFO
samples. PCA can demonstrate exploratory or visualized grouping from
multivariate data and PLS, providing buildings with reliable calibration
and classification strategies to predict quantitatively based on the col-
lected 'H NMR spectral profile experiments.

Unfortunately, currently NMR spectroscopy is not widely nd in
official product analysis (compendial method) and oil quality control
laboratories because it is considered complicated and too expensive. In
practice, one NMR spectrum can be obtained very fast within ap-
proximately 15 min and subsequent chemometrics analysis of the entire
spectrum can be done quickly and automatically done with chemo-
metric software such as Unscrambler, so that PCA and PLS operations
can also be carried out very quickly (about 10 min). Therefore, in the
future, it is necessary to increase the role of cheaper and smaller
benchtop NMR instrumentation and software in order to make NMR

Results of PLS modeling and prediction of the RFO properties based on both methods (1 HNMR and FTIR) [43].

Parameter Method Value Factor R* Root Mean Square Error (RMSE)
Calibration Validation Prediction RMSEC RMSEV RMSEFP
Unsaturated degree 'H NMR 0-90 1 0.972 0.967 0.915 3.08 3.29 418
FTIR 0-90 1 0919 0914 0.834 5.31 5.49 5.50
FFA value 'H NMR 0-100 2 0988 0.986 0982 3.49 376 ilz
FTIR 0-100 2 0.977 0.977 0.948 4.B8 5.15 510

11




L. Triyasmono and U. Holzgrabe

spectroscopy more suitable and accessible for routine analysis in oil

&uality control.
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