Arifin 2022 I0OP Conf. Ser. Ma
ter._Sci._Eng._1212_012029.pdf

Submission date: 28-Apr-2023 08:14PM (UTC+0700)

Submission ID: 2078228757

File name: Arifin_2022_IOP_Conf._Ser.__Mater._Sci._Eng._1212_012029.pdf (971.66K)
Word count: 4987

Character count: 24653



IOP Conference Series: Materials Science and Engineering

PAPER - OPEN ACCESS You may also like
The application of vapour equilibrium technique to  Zittiiine i

control suction to study the shrinkage and water [Ha) In the Wesle Resufing fom e

Activities of Unlicensed Gold Mining

retention of compacted Claystone-Bentonite Do Rzt Hatmoko, Ar Handono
. Ramelan and Pranoto
mixtures

- Modelling of oedometric compression and
wellin haviour of th llovo-

To cite this article: Y F Arifin ef al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1212 012029 g gkn Jesmine

- Assessment of radiological health risk and
radiogenic heat production changeabilit
of different sedimentary rocks at Gabal Um
View the article online for updates and enhancements. Hamd, Southwestern Sinal, Egypt
— pd Aya M Zaghloul, Hosnia M Abu-Zeid,
lbrahim E El Aassy et al.

) The Electrochemical Society z
5 bl St Learn More & Register

243rd Meeting with SOFC-XVIII

Boston, MA « May 28 - June 2, 2023

This content was downloaded from IP address 103.23.233.105 on 28/04/2023 at 12:02




International Conference on Science in Engineering and Technology (ICoSiET 2020) 10P Publishing
I0P Conf. Series: Materials Science and Engineering 1212 (2022) 012029 doi: 10.1088/1757-899X/1212/1/012029

The application of vapour equilibrium technique to control
suction to study the shrinkage and water retention of
compacted Claystone-Bentonite mixtures

Y F Arifin'?, M Arsyad', M Afdi', H Muslim'

!Civil Engineering Study Program, University of Lambung Mangkurat, Banjarbaru,
Indonesia

*Wetland Based Material Research Center, University of Lambung Mangkurat,
Banjarbaru, Indonesia

y.arifin@ulm.ac.id

Abstract. Understanding soil shrinkage and retaining water is essential for learning more about
the possibility of cracking of liner. Moreover, the factors that influence it are also important to
know to improve the material tested as hazardous waste liners. The vapour equilibrium technique
is widely used to control suction of compacted soils experiencing drying-wetting phenomena. It
is considered to be inexpensive, simple, and has the ability to adequately control the suction
applied to soil samples. This paper, therefore, describes its application in studying the shrinkage
and water retention in compacted claystone-bentonite mixtures. This involved using five
saturated salt solutions including potassium sulphate (K2504), potassium chloride (KC1), sodium
chloride (NaCl), potassium carbonate (K:COs), and magnesium chloride (MgCl;.6H>O). The
sample was allowed to be in equilibrium with the relative humidity salt solution and a calliper
was used to measure the dimensions every day up to when this was achieved. The results showed
the bentonite in the mixture affects the amount of shrinkage and water retention while the
sample's initial moisture content was also found to be very influential on the magnitude of the
primary and residual shrinkage. Moreover, the sample's ability to hold water was almost the same
without differentiating the initial water content at a total suction of more than 41084 .91 kPa.

1. Introduction

Claystone is a material usually avoided and discarded due to its unfavourable behaviour and the
existence of its layers considered to be a problem in construction work have been reported in some
publications [1-5]. The use of this material has, however, been widely recommended, especially as a
barrier to hazardous waste and this requires mixing it with bentonite to improve its hydro-mechanical
properties [6—9]. Zang and Krohn [9] reported the superiority of the claystone-bentonite mixture's hydro-
mechanical properties compared to compacted pure bentonite and bentonite-sand mixture which
included higher density, stiffness, and stability, and very low permeability as well as its ability to release
gas at lower pressure [9]. The characteristic absorption of clay minerals in the claystone/clay shale [10]
also adds to its advantage compared to the use of sand to mix the clay liners. It is even more beneficial
when the claystone is obtained at the project site due to the consideration for the use of local material
by several researchers in recent times [11-13].

The two mixtures are made from clay and one of the characteristics considered is their high shrinkage
which was divided by Comelis et al. [ 14] into four parts which are structural, normal, residual, and zero.
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Meanwhile, Mishra et al. [15] also classified shrinkage in the compacted clay and bentonite-sand
mixtures into initial, primary, and residual stages. It is important to note that both structural and initial
shrinkages are influenced by the bimodal pore distribution in the form of macro and micropores which
were reported by Arifin [16] to be strongly influenced by the initial moisture content of the samples.
Generally, the initial and residual shrinkages are not too significant and this means there is a need to
study the primary shrinkage in claystone and its mixture with bentonite.

Mishra et al. [15] conducted used a drying process to obtain a shrinkage curve and this involved
allowing the sample to be air-dried for two months. It is, however, difficult to implement this method in
areas with high relative humidity (RH) such as in Indonesia due to the posfible absorption of water from
the air by the sample when the RH rises. Therefore, a better method is to control the RH around the
sample using the Vapor Equilibrium Technique (VET) to ensure the sample is balanced at a lower RH.
This approach has also been widely applied to test water retention behaviour or water characteristic
curves of soils, especially clay apart from its application in shrinkage behaviour [16-18]. It has also
been applied in testing the hydro-mechanical behaviour of unsaturated compacted clay to control the
suction applied to the sample [7],[16], [19-21]. VET,however, generally requires using a saturated salt
solution with some researchers observed to have used molal salt solutions such as sodium chloride [16],
[18]. The sample also needs to be in equilibrium with the relative humidity above the solution [7], [16—
201, [22] and this means temperature needs to be controlled due to its strong influence on the RH. The
method is also usually combined with the axis translation technique at low suction [16], [21] and the
changes in the temperature gradient affect the RH with further causes a variation in the total suction
being applied [16], [23], [24]. This paper, therefore, discusses the shrinkage behaviour and water
retention of compacted claystone-bentonite mixtures using VET.

2. Methods and Procedures

[ ]
2.1. Materials Used

The materials used in this study include claystone and bentonite with the claystone offfained from the
Banjarbaru city area while the bentonite is available in the market. The Engineering Properties of the
two materials are summarized in Table 1 and the claystone observed to have a liquid limit (LL) of
50.76% and a plasticity index (PI) of 20.95% while and these are twice as much as those obtained from
Belencito formation in eastern Andes mountain, Columbia, as reported by Espitia et al. [1].

2.2. Sample preparation

The Standard Proctor compaction test (ASTM D698-07) was conducted to determine the relationship
between water content and claystone density used as a primary material and the optimum moisture
content and maximum density were found to be 15% and 16kN/cm’, respectively. All the samples were
prepared using these values and those with lower and higher water contents at 10% and 15% were used
to study the effect of water content.

Claystone was mixed with 5%, 10%, 15%, and 20% bentonite on dry weight basis while water was
added to reach the pre-selected level of 10%, 15%, and 20% and value. Meanwhile, the water contained
in each sample was also calculated before mixing. The mixed sample was left in equilibrium for one
day and statically compacted to reach a density of 16 kN/m® and the dimension used was, however,
thinner than usual as observed with the 10 mm height and 64.2 mm diameter.

There are two possible conditions in the clay liner or cover layer while on the field and the first
involves the experience of an increase in water content due to rain in the sample which means the initial
process is wetting. It is, however, possible to also experience immediate drying due to the exposure to
air, thereby, leading to shrinkage. The sample was simulated in this study and this led to the second
condition with the vapour equilibrium technique (VET) method.

The total suction of the initial sample was determined before being tested by measuring the RH using
a sensor corrected for accuracy using the chilled-mirror hygrometer technique which has been confirmed
to be the most reliable tool to measure RH [16], [23-25]. Meanwhile, the total suction sample was
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calculated using Equation 1 while the initial conditions of the claystone and bentonite mixture are
presented in Table 2.
Table 1. Engineering properties of materials used

Properties Claystone  Bentonite

Specific gravity 2.60 271
Water content 9o 2.75 14.17
Grain size distribution:

Gravel (> 2 mm) 9 0.02 0.00

Coarse sand (0.6-2.0 mm) o, 0.08 0.00

Medium sand (0.2-0.6 mm) o, 0.10 0.00

Fine sand (0.05-0.2 mm) % 430 1.39

Silt and Clay (0.002-0.05) %, 43 .94 833
' Clay (<0.002mm) 9o 51.55 90.28
Atterberg Limits:

Liquid limit % 50.76 351.71

Plastic limit % 20.95 44.68

Shrinkage limit % 9.74 41.89

Plasticity Index %o 29 81 307.03

. where s is total suction, g, is the volumetric weight of water, R is a universal gas constant which is
8.31432 J/mol.K, T is the temperature in Kelvin, and M,, is molecule mass of water vapour which is
18.016 g/mol.

2 3. Vapour Equilibrium Technigue

The five saturated salt solutions used in this study include potassium sulfate (K»>SQs), potassium chloride
(KCI), sodium chloride (NaCl), potassium carbonate (K>CO3), and magnesium chloride (MgCl.6H-0).
The RH or total suction of each solution calculated using Equation | is summarized in Table 3. The
solution was later placed in an airtight glass equipped with rubber seals and clamp lids as shown in
Figure 1.

Table 2. Initial conditions of claystone-bentonite mixtures

Sample code  Bentonite content  Dry density ~ Water content  Total suction

(%) (kN/m%) (%) (kPa)
100CS-1 0 16 10 2663.56
100CS-2 0 16 15 2237 56
100CS-3 0 16 20 1816.35
95CS-5B-1 5 16 10 4089.92
95CS-5B-2 5 16 15 2664.36
95CS-5B-3 5 16 20 2104.87
90CS-10B-1 10 16 10 5231.79
90CS-10B-2 10 16 15 4233.12
90CS-10B-3 10 16 20 3236.72
Table 3. RH and total suction of saturated salt solution
Solution K>504 KCl NaCl K>CO; MgClL 6H-0
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RH (%) 95.2 81.5 74.3 46 342
T(0) 27.7 28.1 278 28.2 28.0

Total suction (kPa)  6801.21 2831856 41084 .91 107528.77 148484.33

clamp lid‘s(\
rubber seal

wire mesh \
u Samplel _ | _ _
5 Sampel 2
PVC pipe 11—
I
l—_
saturated
salt solution

Figure 1. (a) Photo of an airtight glass used, and (b) sketch of components in the glass

The VET was generally conducted using a desiccator [17], [22] and, apart from the larger volume,
the samples placed in the desiccator influenced each other and this slowed down the time to reach
equilibrium [16].

The compacted samples were placed into a 615 cm”’ glass containing a saturated salt solution, as
shown in Figure 1, and allowed to stay until they attain equilibrium. The weight as well as the
dimensions including the height and diameter of the samples were measured every day using Vernier
callipers through the direct measurement method [26]. They were placed in the oven for 24 hours to
obtain the dry weight and two samples were tested to represent the conditions presented in Table 1.
Moreover, smaller glasses were used to ensure each is filled with different solutions and due to its ability
to allow concurrent testing of identical samples to reduce the time needed for the test.

3. Results and Discussion

3.1. Time to reach equilibrium

The samples were considered to have reached equilibrium condition when no change was recorded in
their weight and dimensions. Figure 2 shows a typical change in the weight, diameter, and height of the
samples 95CS-5B in (a) and 90CS-10B in (b) for a glass containing a saturated K-SQOs solution with a
total suction of 6848.64 kPa. This means the weight decreases by time followed by the diameter and
height. Meanwhile, the weight at 95CS-5B-3 and 90CS-10B-3 with an initial water content of 20% was
constant on the 11th and 12th day while the value was also observed to be constant on the 9th day for
95CS-5B-1 and 90CS-10B-1 with an initial water content of 10% . Furthermore, the diameter and height
measured for the 95CS-5B-1 and 90CS-10B samples -1 were relatively constant at the 9th and 10th days
while it was 11th and 12th day for 95CS-5B-3 and 90CS-10B-3. These results showed the equilibrium
time was affected by the initial water content such that a longer time is required to achieve equilibrium
at a higher value for the initial moisture content.

Figure 3 shows the change in the weight by time at higher total suction of 39055.36 kPa for 95CS-
5B in (a) and 90CS-10B in (b). The weights of the 95CS-5B-1, 95CS-5B-2, and 95CS-5B-3 were
observed to be constant at the 7th, 8th, and 9th day while those for 90CS-10B-1 to 90CS-10B-3 were on
the 8th, 9th, and 10th day. This means the time to reach equilibrium was relatively faster at high suction
than lower suction.

Figure 3 also shows the sample's weight under equilibrium conditions was almost the same without
differentiating the initial moisture content. This result is typical for samples which allowed equilibrium
at a total suction of more than 41084 .91 kPa.
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3.2. Shrinkage behaviour of compacted claystone-bentonite mixtures

The soil shrinkage behaviour is usually depicted in the relationship between void ratio and water content
[14—16, 26] and this is shown for claystone and bentonite mixture in Figure 4. The data is consistently
displayed using different shape markers and colours as observed in the triangles, squares, and circles
applied for the initial moisture contents at 10%, 15%, and 20% respectively. Moreover, green, blue and
red colours were used to distinguish the percentage of bentonite at 100% claystone, 5% bentonite, and
10% bentonite respectively. The sample shrinkage curve is shown in the figure to only have two distinct
stages which are primary and residual with no initial shrinkage obtained for all the samples tested.
Generally, a sample with three stages usually has a high initial moisture content or become saturated in
the swelling process as reported by Mirsha et al. [15]. A two-stage shrinkage sample was, however,
found for the bentonite-sand mixture at optimum moisture content and maximum density conditions.
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Figure 2. Typical change of weight, diameter, and height of samples at total suction of
6848.64 kPa at () 95CS-5B, and (b) 90CS-10B
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Figure 3. Weight by time curves at total suction of 41084 91kPa at (a) 95CS-5B, and
(b) 90CS-10B
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The water content at which the primary shrinkage ended or the residual shrinkage started (w,), as
well as the magnitude of each, are summarized in Table 4. Moreover, the w,, PS, and RS are used to
represent the water content at residual shrinkage, primary shrinkage. and residual shrinkage.
respectively. The information on Table 4 shows samples 100CS-1, 2, and 3 with an initial water content
of 10%, 15%, and 20% have a w, of 2,068%, 4,196%, and 4 .47% respectively. The content at residual
shrinkage was observed to have increased with the initial value and this was also the same for the
claystone samples with bentonite such as 95CS-5B and 90CS-10B.

Table 4 also indicates the influence of the initial moisture content through the PS and RS. The 100CS-
1, 2, and 3 experienced primary shrinkage of 19.79%, 21.37%, and 35.65%, and residual shrinkage of
09%, 4.74%, and 7.99%, respectively. At the same density, the PS and RS were recorded to have
increased with the initial water content and the same trend was also obtained for claystone-bentonite
mixtures.

Table 4. Shrinkage properties of claystone-bentonite mixtures

100CS 95CS-5B 90CS-10B
1 2 3 1 2 3 1 2 3
w, (%) 2.068 4.196 4.478 2.827 4.313 4.542 6.160 6436 6.725
PS (%) 19.79 21.37 3565 16.79 20.69 32,92 12.40 1749 25.67
RS (%) 0.90 4.74 7.99 219 3.40 3.79 3.39 6.18 9.70
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A comparison was made on the samples to determine the effect of bentonite at the same initial
moisture content. The w, of 100CS-1, 95CS-5B-1, and 90CS-10B-1 at initial content of 10% were
2068%, 2,827%, and 6.16 while the primary shrinkage was 19.79%, 16.79%, and 12.40% and the
residual shrinkage was 0.9%, 2.19%. and 3.39% respectively. These data showed the w, and PS
increased while RS decreased with an increase in the bentonite percentage. The samples with 10% and
20% initial water content also showed the change in void ratio as shown in Figures 5(a) and (b). The
figures also show the effect of bentonite content on the shrinkage behaviour of the samples.

0.70 0.70
0.65 0.65
0.60 0.60
0.55 0.55
T 00 T 050
% 0.45 ?3 0.45
- -
0.40
040 —0—100CS
0.35 0.35 —8—95CS-5B
—8—90CS-10B
0.30 030 ; . .
0 5 10 15 20 0 5 10 15 20
Water content (%) Water content (%)
Figure 5. Water content-void ratio relationship of samples due to drying (a) w= 10%, and
(b) w=20%

3.3. Water retention of compacted claystone and bentonite mixtures

The water retention curves of claystone and bentonite mixtures are indicated in the relationship between
water content and total suction as shown in Figure 6. In consistence with the previous figures, the 100CS,
95CS-5B, and 90CS-10B are displayed in green, blue, and red respectively while the initial condition is
in black. Moreover, those with an initial moisture content of 10%, 15%, and 20% are presented in
triangle, square, and circle respectively. Figure 6(a), therefore, shows the water content of 100CS-1, 2,
and 3 was initially 20%, 15%, and 10% and later decreased as the suction was increasing. Meanwhile,
the amount of water content retained by the sample is almost the same at the total suction of 41084.91
kPa and the same trend is observed in other samples as shown in Figures 6(b) and (c). Arifin [16] found
a similar result for bentonite and hentonite-sand mixtures. Furthermore, dry samples from saturated
conditions have almost the same water content at suction higher than the air entry value (AEV) even
though they are compacted at different water levels.

The difference in water retention curve at low total suction is due to the pore size distribution from
the samples compacted at lower and higher moisture content than the required optimum. At the lower
value, the macropores became dominant while it was the micropores at high values [16]. Moreover,
water does not only fill the intra-particles or micropore but also the inter-particles or macropores at low
total suction and also affected by the fabric. However, at the high total suction of 41084.91 kPa recorded
in this study, the water was in the intraparticle or micropore and this reduced the influence of the fabric
due to the adsorption of the water with hydration force by the clay surface.

Samples with the same conditions are plotted in a graph as shown in Figure 7 to determine the effect
of the bentonite with those at 10% presented in Figure 7(a) and 20% in (b). The curve of the sample
containing 5% bentonite is observed to be above the curve for the sample without bentonite or 100CS
while the highest curve was recorded with 10% content. Moreover, the water content was found to have
increased with the bentonite content at the same total suction and similar behaviour is present in Figure
7(b) showing samples with higher bentonite content have the ability to absorb more water.
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4. Conclusions

The results of study on the shrinkage properties and water retention of compacted claystone and
bentonite mixtures have been presented. The sample shrinkage curve has only two distinct stages which
are the primary and residual shrinkage. Water content at residual shrinkage was observed to have
increased with the initial water content. The amount of primary and residual shrinkages also increased
with the sample's initial moisture content at the same density. The Primary shrinkage also increased with
the bentonite content while the residual shrinkage was observed to have decreased. The water retention
curve was strongly influenced by the initial moisture content at a total suction lower than 41084.91 kPa
while the ability to hold water was almost the same at higher values. The results shows that the addition
of bentonite to the claystone material increases the ability of the sample to hold water and a higher
bentonite content holds more water content at the same total suction.
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