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Abstract: The high content of natural organic matter (NOM) is one of the challenging characteristics
of peat water. It is also highly contaminated and contributes to some water-borne diseases. Before
being used for potable purposes, peat water must undergo a series of treatments, particularly for
NOM removal. This study investigated the effect of coagulation using aluminum sulfate coagulant
and adsorption using powdered activated carbon (PAC) as a pretreatment of ultrafiltration (UF) for
removal of NOM from actual peat water. After preparation and characterization of polysulfone
(Psf)-based membrane, the system’s performance was evaluated using actual peat water, particularly
on NOM removal and the UF performances. The coagulation and adsorption tests were done
under variable dosings. Results show that pretreatment through coagulation–adsorption successfully
removed most of the NOM. As such, the UF fouling propensity of the pretreated peat water was
substantially lowered. The optimum aluminum sulfate dosing of 175 mg/L as the first pretreatment
stage removed up to 75–78% NOM. Further treatment using the PAC-based adsorption process further
increased 92–96% NOM removals at an optimum PAC dosing of 120 mg/L. The final UF-PSf treatment
reached NOM removals of 95% with high filtration fluxes of up to 92.4 L/(m2.h). The combination of
three treatment stages showed enhanced UF performance thanks to partial pre-removal of NOM that
otherwise might cause severe membrane fouling.

Keywords: coagulation–adsorption; membrane; organic matter; peat water; ultrafiltration; polysulfone

1. Introduction

The supply of high-quality freshwater is a crucial problem in rural areas. In many
cases, water resources are of inferior quality (i.e., peat water), making it inconsumable
without implementing advanced treatments. Peat water is one of the water sources that
are still untapped. It is characteristically acidic (pH 5.9) and high in natural organic matter
(NOM), identified using three standard parameters of the non-specific indicator: dissolved
organic carbon (DOC, 36.40 mg/L), UV absorbance 254 nm (0.955 1/cm), and organic
substances (113.76 mg KMnO4/L). NOM in peat water may exert odors, aromatization,
biological instability, and corrosion of water distribution networks [1]. Conventional water
treatments for removal NOM have been widely applied by standalone processes such

Sustainability 2022, 14, 370. https://doi.org/10.3390/su14010370 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14010370
https://doi.org/10.3390/su14010370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3984-4855
https://orcid.org/0000-0002-6833-3325
https://orcid.org/0000-0001-7292-6046
https://doi.org/10.3390/su14010370
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14010370?type=check_update&version=1


Sustainability 2022, 14, 370 2 of 12

as coagulation–flocculation and sedimentation [2], activated carbon adsorption [3], and
filtration [4]. However, they do not provide optimal treatment for removing NOM.

Previous studies have reported types of water and wastewater treatments that contain
high NOM using standalone coagulation, with about 60–70% removal of hydrophobic
fraction of NOM and 30–40% of hydrophilic fractions [5–8]. Another work also reported
performance of adsorption for NOM removals of up to 98% that were obtained by powdered
activated carbon (PAC) with an optimum dosage 500 mg/L [9], which can remove organic
materials with a molecular weight (MW) ranging from 0.5–1 to 1–3 kDa. Nevertheless, it
could not remove NOM with an MW of <0.5 kDa [10,11]. In addition, the adsorbent may
be saturated due to the complete occupation of the adsorption site, while reactivation of the
adsorbent results in a complex operation, which may lead performance to decrease [12].

Membrane technology is an advanced treatment process for treating NOM in water,
such as wetland or peat water [13–17]. Several studies were reported successful treatment
of wetland saline water by pervaporation using silica-based membranes [18–21], wetland
saline water by pure silica membrane and organosilica-based membranes [22–28]. Another
study showed ultrafiltration (UF) membrane for removal fraction of NOM from peat
water [29]. The UF technology is more applicable and better for reducing NOM in water
compared with pervaporation. The pervaporation setup is more complex than UF. However,
despite NOM’s effective removal by the membrane, it is also able to decline membrane
performance through membrane fouling [30,31]. Fouling is a major factor that may decrease
membrane flux during the separation process, especially the ultrafiltration.

Membrane fouling in peat water treatment is mainly caused by NOM through both
the hydrophilic and the hydrophobic fractions [32]. The most common methods to reduce
membrane fouling are by altering the physical and chemical properties of the membrane
materials by adding additives in the fabrication stage [33–36] or by applying pretreatment
of the feed in the operational stages [32,37]. In this study, both coagulation and adsorption
were investigated for the first time as a pretreatment of UF for the treatment of real peat
water.

This paper reports a preliminary study on NOM removal from peat water by using
both aluminum sulfate-based coagulation and PAC-based adsorption as a pretreatment
of UF. The polysulfone (PSf) UF membrane was first prepared and characterized. Before
being used for the pretreated peat water filtration. The NOM composition in the peat
water samples was then characterized. Finally, actual peat water was treated using a series
of treatments, namely aluminum sulfate-based coagulation, PAC-based adsorption, and
filtration using the developed Psf-UF membrane.

2. Materials and Methods
2.1. Peat Water Characterization

The peat water sample was taken from Banjar Regency, South Kalimantan, Indone-
sia. Preliminary characterization of peat water included measuring pH using a pH meter
(Hanna Hi2211), KMnO4—oxidizable organic substances using the permanganate titrimet-
ric method, and aromatic organic matter absorbance of UV254, and DOC by a total organic
carbon analyzer (Shimadzu TOC-L). The permanganate titration method was conducted
according to Standard (SNI 06-6989.22-2004). The UV254 parameter was measured by
a UV visible (UV-1600 Spectrophotometer). On the other hand, DOC was analyzed by
high-temperature catalytic oxidation with non-dispersive infrared (NIDR) detection. As
a pretreatment, the samples were filtered using Whatman 0.45 µm before being tested
by TOC analyzer. Meanwhile, specific UV absorbance (SUVA254, L/mg.m) was used to
represent TOC normalized aromatic moieties (UV254). Meanwhile, specific UV absorbance
(SUVA254, L/mg.m) was used to represent TOC normalized aromatic moieties (UV254) by
dividing of the UV254 with the DOC value.
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2.2. Membrane Preparation and Characterization

The dope solution for Psf UF membrane preparation was made using 18 wt.% of Psf
(Merck) as the polymer, 64 wt.% dimethylacetamide (DMAc, Merck) as the solvent, and
polyethylene glycol (PEG, Merck) PEG 600 as the additive (18 wt.%). According to earlier
reports, the membranes were prepared using the phase inversion method [35]. The polymer,
solvent, and additive were mixed and stirred until homogeneous. Then, the solution was
left idle overnight to release the entrapped bubbles. Subsequently, the dope solution was
cast on a glass plate at a wet casting thickness of 165 µm using a casting applicator. The
phase inversion was then continued by immersing the cast film into a coagulation bath
containing nonsolvent solution comprising of DMAc 35 wt.% and KCl 0.5 wt.% in water.

The hydraulic resistance of the prepared membrane was characterized by measuring
the clean water permeability, and a scanning electron microscopy (SEM) was used to
determine the membrane PSf morphology and membrane thickness. The pore size of the
membranes was determined using image-J software from the surface of the SEM image [38].
The permeability test was conducted by flowing the distilled water on a dead-end system
filtration device. The permeate volume was then measured every 5 min intervals for 60 min
operation time under different pressures of 1, 1.5, 2, 2.5, and 3 bar.

2.3. Coagulation, Adsorption, and Ultrafiltration

The coagulation tests were done by varying doses of aluminum sulfate (one of the most
common coagulants) in a range of 125–250 mg/L using the Jar-test method at adjusting pH
6 (regulated by drop-wise adding 0.1 M NaOH (Merck)) with a working volume of 1.2 L.
During the jar test, the coagulant mixture in peat water was stirred at 100 rpm for 1 min,
followed by slow stirring at 40 rpm for 20 min and sedimentation for 20 min, according to
a protocol reported earlier [39]. The range of the coagulant dosage was defined based on a
previous study [31].

The PAC adsorption tests were done using the Jar-test under varying 20–200 mg/L
doses. It was carried out for the pretreated peat water through coagulation/flocculation.
The feed and PAC (particle size of 100 mesh; surface area of 800 m2/g, Merck) were mixed
with a rotary shaker at 180 rpm for 3 h.

After coagulation and adsorption, the treated supernatant underwent a UF—200 mL
of the supernatant was filtered using the developed UF PSf membrane by using a stan-
dard dead-end filtration cell (Figure 1) according to a protocol detailed elsewhere [30].
The filtrations were done at variable pressures of 1, 1.5, 2, 2.5, 3 bar for 60 min at room
temperature of feed (25 ◦C), stirred at 50 rpm. A gas compressor generated the pressure,
and the permeate volume was collected every 5 min. All of the coagulatin, adsorption, and
filtration experiments were done in triplicate.
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3. Results
3.1. Peat Water Characteristics

The characterizations of peat water were carried out for four periods to monitor the
changes of NOM content of the peat water samples, as summarized in Table 1. It shows
that the peat water had a neutral pH, similar to previous reports where the pH value on
surface water ranged from 5.0–8.1 [31]. The high NOM content was indicated by the DOC
values [39,40], the absorbance value of UV254, which are high compared with the results
obtained by Kang and Choo [41] and Jeong et al. [42] of UV254 < 0.1 cm−1 for surface
water. However, compared with the results obtained elsewhere Herwati, Mahmud, and
Abdi [30], Mahmud, Abdi, and Mu’min [31], Saputra [37], Aisyahwalsiah [39] showed
the UV254 absorbance of the peat water samples was relatively low. Similar to the UV254
absorbance value, the SUVA254 values of the peat water sample deviated from others
(Zularisam et al. [43]). Based on their reports, the SUVA254 characteristic of peat water
contained a high hydrophobic fraction. The SUVA254 values of the peat water sample in
this study ranged at 2–3 L/mg.m suggesting the mixture of hydrophobic and hydrophilic
substances NOM characteristics, with a large range of MWs. Similar results were found in
previous research on surface water that reported SUVA254 of < 2 L/mg.m (low hydrophobic
character) [41,42].

Table 1. Characteristics of the peat water sample.

No Parameter Units
Week

Average STDEV
I II III IV

1 pH 6.3 6.3 6.3 6.3 6.3 0

2 DOC (dissolved
organic carbon) mg/L 36.40 - - 36.40 36.4 -

3 UV254 absorbance 1/cm 0.968 1.005 0.977 0.955 0.976 0.02

4 KMnO4 organic
substances

mg
KMnO4/L 120.08 126.4 120.08 113.76 120.08 5.16

5 SUVA254 L/mg.m 2.659 2.761 2.684 2.624 2.682 0.006

3.2. Characterisation of UF-PSf Membranes

The surface and cross-section SEM images of the prepared membrane are shown in
Figure 2. The UF PSf membrane had a tight pore arrangement and sponge-like cross-section
morphology without macrovoids (large cavities), which was similar to the membrane
structure reported earlier [35]. Based on image-J surface SEM image processing (Figure 3),
the surface pore size of the membrane was 0.061 µm, falling under UF range of 0.001–
0.1 µm [44].

The polysulfone membrane used in this study had a pore size of less than 0.1 µm
(Figure 3). However, from the SEM image it is not possible to determine exactly what the
pore size is. However, the pore size distribution can determine by utilized Image-J software
following the previous research used digital SEM image data. The result of processing SEM
images by Image-J can be seen in Figure 3B,C. The results show the average pore diameter
of the membrane is 0.061 µm. Based on literature, the polysulfone membrane used in this
work can be categorized as well as ultrafiltration membrane.
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3.3. Coagulation-Flocculation

Figure 4 shows that for aluminum sulfate dosings of 125–250 mg/L, the removal
efficiency of NOM increased from 125 mg/L to 175 mg/L and then a slight decrease
until 250 mg/L. Beyond that value, the NOM removal efficiency decreased. The loading
restabilization can explain the pattern on the NOM removals as a function of the dosing
rate on the addition of Al2(SO4)3 coagulant [37].
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Figure 4. NOM removal rate represented by oxidation with KmnO4 and UV254 absorbances as a
function of doses of alum in the coagulation–flocculation test.

The oxidation of organic substances by KMnO4 peaked at the optimum dose of
175 mg/L. Meanwhile, a slight decrease in UV254 removals was observed. In the process of
coagulation–flocculation, the dominant fraction of removed NOM is the one that hydropho-
bic or with large MWs as detailed elsewhere [31,45]. In addition, according to Suslova
et al. [46] that KmnO4 can oxidize various types of organic components irrespective of the
MWs.

The NOM removal in the coagulation-flocculation process was achieved optimum at
a dose of 175 mg/L corresponding to organic substances KmnO4 and UV254 absorbance
of 77.78% and 75.24%, respectively. The removal of NOM obtained in this study was
higher than the previous studies [47,48]. After adding the coagulant, the coagulation
rate decreased, as well as the pH value from 6 to 3.65. It was caused by the reaction of
aluminum sulfate with water that produces H+ ions. The acidification of water lowered the
coagulation/flocculation efficiencies.

3.4. Coagulation-Adsorption

The PAC adsorption was carried out after the coagulation/flocculation of the raw
peat water sample. Figure 5 shows the rate of NOM removal in the PAC adsorption
process. The NOM removal rate was higher than the standalone coagulation-flocculation
or adsorption processes reported earlier [32,49]. Increased NOM removal at low pH during
the PAC adsorption can be attributed due to the low pH of the solution due to the preceding
coagulation/flocculation stage [39]. The pH has a significant effect on activated carbon
adsorption and the removal efficiency is higher in acidic than in neutral and alkaline
conditions. The presence of H+ ions in solution leads to competition between H+ ions and
NOM bonding [50].
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Figure 5. The NOM removal rate represented by organic substances of KMnO4 and UV254 ab-
sorbances as function of PAC dosages.

The removal rate of KmnO4—oxidizable organic substances in the coagulation–adsorption
process is higher than the UV254 (representing aromatic moieties). The results were the
opposite of the coagulation/flocculation process, which could be attributed to the NOM
content with large MW removed in the coagulation–flocculation process. As such, only
the low MW NOM remained in the PAC adsorption. In previous research, the adsorption
process could remove NOM hydrophilic fractions with small MWs [9–11]. The removal
rate of KmnO4 organic substances was higher than the UV254 absorbance. These results
indicated that KmnO4 organic substances easily oxidized NOM due to their small MWs as
stated elsewhere [51].

The best PAC dose was 120 mg/L of PAC, judging from the highest removal of
KmnO4 and UV254 parameters of >90%. In addition, the efficiency of NOM removal
slightly increased up to 120 mg/L. Due to the NOM removal of 120 to 200 mg/L being
relatively similar, the 120 mg/L of PAC was chosen because it does not need too much
PAC. The removal efficiencies of KMnO4 organic substances and UV254 under the optimum
dosing were 95.83 and 91.83%, respectively, as shown in Figure 5. The results obtained in
this study were in line with others, e.g., Lee et al. [32] and Aisyahwalsiah [39] using PAC
as the adsorbant. Nonetheless, higher NOM removals were obtained in this study. After
adding PAC, the pH increased as reported by others [49] due to the soluble ash, which is
rinsed out of the media during use, and the effluent pH will eventually approach neutral.

3.5. Coagulation-Adsorption-Membrane Experiments

The permeability of pure water (aquadest), pretreatment feed, and non-pretreated
feed are shown in Figure 6. Based on the results, pure water permeability was obtained
of 38–180 L/h.m2 by the prepared UF polysulfone membrane. This result exhibits the
higher water flux of pure water permeability by low transmembrane pressure compared
to commercial polysulfone membrane (Merck) of 150–350 L/h.m2 (6–20 bar), which was
reported by Adams et al. [52].



Sustainability 2022, 14, 370 8 of 12

Sustainability 2022, 13, x FOR PEER REVIEW 8 of 12 
 

 

Figure 6. The performance of ultrafiltration of pretreated peat water at different pressures. Aquadest 
denotes distilled water and represents the permeability of clean water. 

Figure 6 shows that the NOM removal efficiency decreased by increasing transmem-
brane pressure. The results obtained are by previous research, in which the magnitude of 
NOM rejection is inversely proportional to the applied pressure [53,54]. The deformation 
of the membrane most probably causes it due to high pressure, which causes membrane 
compaction that constricts the pore size and the thicker foulant layer that became the sec-
ondary filter on top of the PSf membrane. 

The NOM removal efficiency reflected from the KMnO4 organic substances was 
higher than the UV254 absorbance obtained in the adsorption process with PAC. The rejec-
tion of NOM by membrane was determined by the adequate pore size [53] and an addi-
tional dynamic layer formed on the membrane surface. 

In addition to the NOM removal rate, water flux value was also an indicator of the 
optimum pressure. Figure 6 shows that the water flux value was directly proportional to 
the pressure. The smallest water flux value was obtained at 1 bar of 13.3 L/h.m2, and the 
highest water flux was at 3 bar of 92.5 L/h.m2. The permeability of each pressure to percent 
removal of NOM for KMnO4 organic substances and UV254 parameters were determined 
to determine the optimum pressure. The highest water flux was obtained with the re-
moval rate of KMnO4 and UV254 of 94.79 and 94.66%, respectively. The UV254 rejection of 
the polysulfone membrane in this work is extremely high over commercial PSf membrane 
that was only able to remove about 41% of NOM at 6 bar [52]. 

The water permeability of treated peat water was smaller than the clean water per-
meability (Figure 6) due to membrane fouling. However, it was higher by almost two-fold 
than peat water permeability without pretreatment, which was also similar reported in 
earlier studies [31,41,54]. It was shown that the pretreatment contributed substantially to 
reducing the membrane fouling [53]. 

The permeability decrease in the pretreated peat water filtration can be attributed to 
the fouling by the residual NOM that escaped from the pretreatment. However, previous 
works by Kang and Choo [41] and Zhang, et al. [55] ascribed the small water permeability 
to the use of PAC. The bonding of NOM with PAC particles caused the PAC-NOM parti-
cles to become an additional foulant that blocks the membrane pores or forms a cake layer 
on the membrane surface. In this study, the PAC was separated. Hence the foulant was 
originated from residual NOM in the feed. 

Figure 6. The performance of ultrafiltration of pretreated peat water at different pressures. Aquadest
denotes distilled water and represents the permeability of clean water.

Figure 6 shows that the NOM removal efficiency decreased by increasing transmem-
brane pressure. The results obtained are by previous research, in which the magnitude of
NOM rejection is inversely proportional to the applied pressure [53,54]. The deformation
of the membrane most probably causes it due to high pressure, which causes membrane
compaction that constricts the pore size and the thicker foulant layer that became the
secondary filter on top of the PSf membrane.

The NOM removal efficiency reflected from the KMnO4 organic substances was higher
than the UV254 absorbance obtained in the adsorption process with PAC. The rejection
of NOM by membrane was determined by the adequate pore size [53] and an additional
dynamic layer formed on the membrane surface.

In addition to the NOM removal rate, water flux value was also an indicator of the
optimum pressure. Figure 6 shows that the water flux value was directly proportional to
the pressure. The smallest water flux value was obtained at 1 bar of 13.3 L/h.m2, and the
highest water flux was at 3 bar of 92.5 L/h.m2. The permeability of each pressure to percent
removal of NOM for KMnO4 organic substances and UV254 parameters were determined
to determine the optimum pressure. The highest water flux was obtained with the removal
rate of KMnO4 and UV254 of 94.79 and 94.66%, respectively. The UV254 rejection of the
polysulfone membrane in this work is extremely high over commercial PSf membrane that
was only able to remove about 41% of NOM at 6 bar [52].

The water permeability of treated peat water was smaller than the clean water perme-
ability (Figure 6) due to membrane fouling. However, it was higher by almost two-fold
than peat water permeability without pretreatment, which was also similar reported in
earlier studies [31,41,54]. It was shown that the pretreatment contributed substantially to
reducing the membrane fouling [53].

The permeability decrease in the pretreated peat water filtration can be attributed to
the fouling by the residual NOM that escaped from the pretreatment. However, previous
works by Kang and Choo [41] and Zhang, et al. [55] ascribed the small water permeability
to the use of PAC. The bonding of NOM with PAC particles caused the PAC-NOM particles
to become an additional foulant that blocks the membrane pores or forms a cake layer
on the membrane surface. In this study, the PAC was separated. Hence the foulant was
originated from residual NOM in the feed.

Overall findings suggested that the application of coagulation–adsorption pretreat-
ment of UF is promising to reduce the fouling potential on the feed as indicated by in-
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creasing the water permeability value and the removal rate of NOM represented by DOC,
KMnO4 organic substance, and absorbance UV254.

In addition, the results obtained were also reinforced with SEM UF-PSF membrane
image after treatment. The SEM images in Figure 7 also show the thickness of the UF-PSf
membrane (determined from the cross-section SEM image) after being compressed at
3 bars was 85.4 µm. The pore structure of the membrane after passing the feed water was
approximately the same as the pristine membrane. It could be seen on the surface of the
membrane there is only a thin layer which is thought to be a cake layer. The additional
cake layer helped enhance the rejection of NOM and the final quality of the permeate. It is
worth noting that a significant difference in thickness was seen from data in Figures 2C
and 7B. The high variability was originated from the cutting process.

Sustainability 2022, 13, x FOR PEER REVIEW 9 of 12 
 

Overall findings suggested that the application of coagulation–adsorption pretreat-
ment of UF is promising to reduce the fouling potential on the feed as indicated by in-
creasing the water permeability value and the removal rate of NOM represented by DOC, 
KMnO4 organic substance, and absorbance UV254. 

In addition, the results obtained were also reinforced with SEM UF-PSF membrane 
image after treatment. The SEM images in Figure 7 also show the thickness of the UF-PSf 
membrane (determined from the cross-section SEM image) after being compressed at 3 
bars was 85.4 µm. The pore structure of the membrane after passing the feed water was 
approximately the same as the pristine membrane. It could be seen on the surface of the 
membrane there is only a thin layer which is thought to be a cake layer. The additional 
cake layer helped enhance the rejection of NOM and the final quality of the permeate. It 
is worth noting that a significant difference in thickness was seen from data in Figures 2C 
and 7B. The high variability was originated from the cutting process. 

 
Figure 7. SEM image of used ultrafiltration polysulfone membrane after ultrafiltration process: (A) 
surface section and (B) cross-sectional. 

4. Conclusions 
This study demonstrated the advantages of combining the coagulation–adsorption 

process and membrane filtration to treat fouling-prone actual peat water. The coagulation-
adsorption showed a positive effect as a pretreatment for the ultrafiltration. The pre-
treated feed showed a lower membrane fouling propensity. The optimum coagula-
tion/flocculation and adsorption condition was at Al2(SO4)3 dosing of 175 mg/L and PAC 
dosing of 120 mg/L, respectively. Higher filtration pressure enhanced the peat water per-
meability. The optimum pressure on the hybrid process was 3 bar with a permeability 
value of 92.5 L/m2.h and an organic removal rate of 95%. The findings highlight the im-
portance of the hybrid system for treating challenging feeds that otherwise proven diffi-
cult when applying a standalone system. Moreover, long-term studies are still required to 
accurately gauge the performance of the hybrid system for treatment of peat water. 

Author Contributions: Conceptualization, M.E. and M.M.; methodology, A.E.P.; software, A.E.P.; 
validation, A.E.P., M.E. and M.M.; formal analysis, A.R.; investigation, A.E.P.; resources, E.L.A.R.; 
data curation, A.E.P.; writing—original draft preparation, A.E.P.; writing—review and editing, 
M.E.; visualization, A.E.P.; supervision, M.M., C.A., M.E. and M.R.B.; project administration, A.E.P., 
R.R., D.H.Y.Y.; funding acquisition, M.E. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The authors thank the Engineering Faculty and Materials and Membranes Re-
search Group (M2ReG), Lambung Mangkurat University for the facilities. Muthia thanks the Ap-
plied Research of Universities Grant 2021–2023, Basic Research Grant 2021–2022, and World Class 
Research Grant 2021–2023 Directorate General of Higher Education, Ministry of Education, Culture, 
Research, and Technology, Republic of Indonesia. 

Figure 7. SEM image of used ultrafiltration polysulfone membrane after ultrafiltration process:
(A) surface section and (B) cross-sectional.

4. Conclusions

This study demonstrated the advantages of combining the coagulation–adsorption
process and membrane filtration to treat fouling-prone actual peat water. The coagulation-
adsorption showed a positive effect as a pretreatment for the ultrafiltration. The pretreated
feed showed a lower membrane fouling propensity. The optimum coagulation/flocculation
and adsorption condition was at Al2(SO4)3 dosing of 175 mg/L and PAC dosing of
120 mg/L, respectively. Higher filtration pressure enhanced the peat water permeabil-
ity. The optimum pressure on the hybrid process was 3 bar with a permeability value of
92.5 L/m2.h and an organic removal rate of 95%. The findings highlight the importance
of the hybrid system for treating challenging feeds that otherwise proven difficult when
applying a standalone system. Moreover, long-term studies are still required to accurately
gauge the performance of the hybrid system for treatment of peat water.
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