Abstract. Let *R*, *S* be two rings with unity, *M* an *S*-module, and $f: R \to S$ a ring homomorphism. If the map $M \to M$, $m \mapsto f(r)m$ is *S*-linear for any $r \in R$, then *M* is a representation module of ring *R*. This condition will be true if $sf(r) - f(r)s \in Ann(M)$ for all $r \in R$ and $s \in S$. The class of *S*-modules *M*, where $sf(r) - f(r)s \in Ann(M)$ for all $r \in R$ and $s \in S$. The class of *S*-module homomorphisms. This class is denoted by \mathfrak{I} . The purpose of this paper is to prove that the category \mathfrak{I} is an abelian category which is under sufficient conditions enabling the category \mathfrak{I} has enough injective objects and enough projective objects. First, we prove the category \mathfrak{I} is stable under kernel and image of module homomorphisms, and a finite direct sum of objects of \mathfrak{I} is also the object of \mathfrak{I} . By using this two properties, we prove that \mathfrak{I} is the abelian category. Next, we determine the properties of the abelian category \mathfrak{I} , such that it has enough injective objects and enough projective objects and enough projective objects. We obtain that, if *S* as *R*-module is an element of \mathfrak{I} , then the category \mathfrak{I} has enough projective objects and enough projective objects. We