

Bulletin of Chemical Reaction Engineering & Catalysis, 17 (4) 2022, 743-754

Research Article

Effect of Precursor and Temperature Annealing on the Catalytic Activity of Intermetallic Ni₃Sn₂ Alloy

R. Rodiansono^{1,2,*}, Atina Sabila Azzahra², Sadang Husain³, Pathur Razi Ansyah⁴

¹Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia. ²Inorganic Materials and Catalysis (IMCat) Lab, Catalysis for Sustainable Energy & Environment (CATSuRe), Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia.

³Department of Physics, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia.

⁴Department of Mechanical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35.5, Banjarbaru 70714, Indonesia.

Received: 21st September 2022; Revised: 30th October 2022; Accepted: 30th October 2022 Available online: 7th November 2022; Published regularly: December 2022

Abstract

The effect of nickel precursors and the temperature annealing to obtain intermetallic Ni₃Sn₂ alloy catalysts on its activity and selectivity in the selective hydrogenation of biomass-derived furfural (FFald) were investigated. Two types of nickel precursors (c.a., *i*) nickel metal (Ni^o) derived from Raney®nickel and *ii*) nickel ion (Ni²⁺) derived from nickel chloride) were employed as the starting materials via hydrothermal at 423 K for 24 h followed by reduction with H₂ at the elevated temperature of 573-873 K for 1.5 h. The physico-chemical properties of the intermetallic Ni₃Sn₂ were characterized by XRD, N₂-, and H₂-adsorption, ICP-AES, and NH₃-TPD. The intermetallic Ni₃Sn₂ alloy catalysts, both bulk and supported, demonstrated high activity and selectivity towards hydrogenation of FFald. The activity and selectivity of γ -Al₂O₃ and AA-supported Ni₃Sn₂ alloy catalysts in the hydrogenation of FFald to furfuryl alcohol (FFalc) were maintained even after annealing at up to 873 K, but that of bulk Ni₃Sn₂ drastically dropped. Ni-Sn alloy catalysts which were obtained from Raney®Ni precursor showed more stable than that of nickel salts during hydrogenation of furfural to furfuryl alcohol.

Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Keywords: intermetallic Ni₃Sn₂; bulk & supported Ni₃Sn₂; selective hydrogenation; furfural; furfuryl alcohol

How to Cite: R. Rodiansono, A.S. Azzahra, S. Husain, P.R. Ansyah (2022). Effect of Precursor and Temperature Annealing on the Catalytic Activity of Intermetallic Ni₃Sn₂ Alloy. *Bulletin of Chemical Reaction Engineering & Catalysis*, 17(4), 743-754 (doi: 10.9767/bcrec.17.4.15923.743-754)

Permalink/DOI: https://doi.org/10.9767/bcrec.17.4.15923.743-754

1. Introduction

Most building blocks of biomass-derived compounds are in the forms of oxygenates which have a number C–O bonds and higher oxygen content, including sugar alcohols, functionalized carboxylic acids, aldehydes and ketones, phenolic compounds, and furanic derivatives [1–3]. In this sense, the transformation of the oxygenates

* Corresponding Author. Email: rodiansono@ulm.ac.id (R. Rodiansono); Telp/Fax.: +62-511-4773112 into high value-added chemicals and fuels using simple supported metal catalysts are quite difficult to catalyze the complexes of C–O bonds. Bimetallic or bifunctional catalyst systems, typically consisted of active metals, supports, and promoters, would be a promising catalyst for feedstocks upgrading. The interaction between metals in the bimetallic or bifunctional catalyst system can modify the properties of catalyst, enhance the activity and selectivity, significantly improve the catalyst stability in presence of biomass-derived impurities or in severe reaction

bcrec_15923_2022 Copyright © 2022, ISSN 1978-2993; CODEN: BCRECO