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In the present day, the industry is growing rapidly. Every process in the industries brings out pollution.
Heavy metals, especially iron ions have contaminated water resources due to industrial activity. The high
concentration of iron ions is dangerous for human life. To solve this issue an activated carbon from sago
pith waste was developed to remove iron ions from industrial wastewater represented by artificial iron
solution. The objective of this research is to measure the adsorption capacity of sago pith waste activated
carbon (SPWAC) for treating artificial iron solution. The adsorbent was carbonized at 300 �C and 80 min.
Further, it was activated by citric acid 0.1 M. The treated iron solution was analyzed by condutometer to
examine the iron content. Subsequently, the functional groups of SPWAC were tested via Fourier
Transform Infra-Red (FTIR). The result indicates that the SPWAC can reject iron ions of more than 80 %
with an iron ions concentration of 1.81 mg/L at 60 min and 300 rpm. While, FTIR analysis show alkenes,
carbonyl, and hydroxyl groups are present in SPWAC. The iron ions concentration in treated water is
below the allowable threshold (0.3 mg/L) based on World Health Organization (WHO) guidelines for
drinking water. Therefore, the SPWAC is promising technology to be applied for treating industrial
wastewater.
Copyright � 2023 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the 2nd Regional Congress
on Membrane Technology 2022 in Conjunction with the 16th AUN/SEED-NET Regional Conference on
Environmental Engineering 2022.
1. Introduction

Fe is a symbol of iron which is a chemical element. Industrial
activities such as the utilization of pesticides, metals leaching from
waste dumps, runoff, landfill, acid mine drainage, smelting, and
foundries generate heavy metal pollution. It negatively impacts
soil, water, and air ecosystems. Not only from industrial activities
but high iron is also found in peat water or wetland water as well
[1–12]. Iron excess can be harmful to human bodies because it has
high solubility that can easily be absorbed in the body [13]. Even at
low concentrations, heavy metals can be a threat to living crea-
tures [14]. This has been a challenge in many developing countries
in decreasing human exposure to heavy metals in the water.
Several methods have been attempted to remove the iron con-
tent. It included zero-valent iron (ZVI), electro-coagulation, oxida-
tion, ion exchange, lime softening, membrane separation, and
adsorption [15–26]. Membrane is advance technology which
widely for metal or organic removal in water [27–49]. Meanwhile,
adsorption is recognized as the most effective method to remove
the heavy metal because it is easy to operate and simple design,
and more convenience [50]. In recent years, there is an improve-
ment in the use of renewable materials as adsorbents for heavy
metal rejection in water. Several natural adsorbents such as Juni-
per bark and wood [51], rice bran [52], sugarcane bagasse [53],
orange peel [54], pomelo peel [55], and potato peel [56] have been
reported to adsorb heavy metals.

Sago waste is mainly produced from starch processing [57].
Sago (Metroxylon sagu Rott.) can be easily found in the wetland area
where other crops cannot grow without improved soil and drai-
nage [58]. The distribution of sago has spread around Southeast
th AUN/

m sago

https://doi.org/10.1016/j.matpr.2022.12.090
mailto:melma@ulm.ac.id
https://doi.org/10.1016/j.matpr.2022.12.090
http://www.sciencedirect.com/science/journal/22147853
http://www.elsevier.com/locate/matpr
https://doi.org/10.1016/j.matpr.2022.12.090


I. Syauqiah, A. Sir Kautsar Harivram, E. Lulu Atika Rampun et al. Materials Today: Proceedings xxx (xxxx) xxx
Asia (Malaysia, Indonesia, Philippines, Thailand) and north-
western Melanesia (Solomon island and Papua New Guinea).
Indonesia has 2.3 million ha (51 % of the sago area in the world)
[59]. It has been consumed by humans and animals as sago starch.
However, about 50 % of the sago palm is not extracted [60]. Yama-
moto [60] fabricates a charcoal briquette, biodegradable foam, and
ethanol from sago pith waste. This is a reason to find another alter-
native that can reuse sago pith waste with high economic value
and minimize environmental damage.

Sago pith waste which is lignocellulosic biomass can be a
promising material for activated carbon fabrication [61]. Activated
carbon in particular is a very flexible material as it can be easily tai-
lored with appropriate chemical and physical treatments [62]. A
prior study has studied sago waste as a biosorbent using H2SO4

and (NH4)2S2O8 activation [63]. But these activating agents have
difficult accessibility in rural areas and complex preparation.
Therefore, the present paper reports the adsorption capacity of
sago pith waste activated carbon (SPWAC) using citric acid for
treating industrial wastewater. It is because citric acid contains a
carboxylic functional group and is abundant [64]. Carboxyl is neg-
atively charge. Fe ions will be more easily attached to the carboxyl
functional group because of its positively charged surface. The
effect of carboxyl in adsorption has reported in another study[65].

The objective of this study is to measure the adsorption capacity
of sago pith waste activated carbon (SPWAC) for treating artificial
iron solution. Majority of studies use pseudo-first order (PFO) and
pseudo-second order (PSO) models to describe adsorbent kinetics.
The SPWAC can provide low-cost material with simple fabrication
to remove iron from an aqueous solution.
Fig. 1. FTIR of sago pith waste and sago pith waste activated carbon (SPWAC).
2. Materials & method

2.1. Materials

In this experiment, sago waste was collected from the sago
industry located in Sungai Tabuk sub district-Banjar district, South
Kalimantan Province, Indonesia, Fe2(SO4)3 powder to make an arti-
ficial iron solution of 10 ppm, distilled water, 0.1 M citric acid
(C6H8O7), conductivity meter (Lutron CD-4301, Taiwan) as well
as furnace and oven.

2.2. Sago pith waste activated carbon fabrication

Sago pith waste undergoes a washing and drying process under
the sun to remove dirt. Next, the sago pith meshed. Carbonaceous
sago pith waste (CSPW) is made by meshing sago pith waste. It is
then followed by a calcination process for 80 min at 300 �C in air
condition to remove ash, water content, and volatiles. The CSPW
was sifted to 120 mesh and dried. Citric acid was added (0.1 M)
and stirred for 2 h. It is dried again at 100 �C for 2 h to obtain Sago
pith waste activated carbon (SPWAC). Finally, distilled water was
used to wash SPWAC until pH is neutral and dried in an oven for
2 h at 80 �C. Fourier Transform Infrared (FTIR) was tested to char-
acterize the SPWAC.

2.3. Batch adsorption and kinetic studies

An adsorption study was performed using a batch process to
obtain kinetic data. Fe2(SO4)3 was diluted in distilled water to
make a 10 ppm artificial iron solution. After that, 0.1 mg SPWAC
was mixed into an artificial iron solution and stirred at room tem-
perature for 60 min. During the adsorption process, the solution
conductivity was observed to determine Fe concentration [66].
After all, the suspension was filtrated using a vacuum filter to sep-
arate the adsorbent from the solution and final conductivity was
2

measured. The Fe removal efficiency and Fe adsorbed at equilib-
rium (qe) were calculated using the equation below:

Feremovalð%Þ ¼ Ci � Ceð Þ
Ci

� 100% ð1Þ

qe ¼
Ci � Ceð Þ

w
� V ð2Þ

Where Ci is initial concentration of Fe ion (mg/L), Ce is concen-
tration of Fe ion at equilibrium condition (mg/L), w is weight of
adsorbent used (g) and V is volume of Fe solution (L). The kinetic
adsorption of Fe ion was observed using Pseudo First Orde (PFO)
and Pseudo Second Orde (PSO) models [67–69]. PFO and PSO mod-
els can be written as:

ln qe � qtð Þ ¼ lnqe � k1t ð3Þ

1
qe

¼ 1
k2q2

t
� 1
qe

ð4Þ

Where k1 is PFO constant (s�1), k2 is PSO constant (g/mg s) and t
is adsorption time (min).

3. Results and discussions

3.1. Fourier Transform Infrared (FTIR)

Fig. 1 depicts the difference between sago pith waste and sago
pith waste activated carbon (SPWAC) based on Fourier Transform
Infrared (FTIR). The FTIR is operated within 4000–600 cm�1 wave-
length numbers. FTIR works by identifying functional groups. Alke-
nes (C@C) and carbonyls (C@O) are found at 1639 and 1733 cm�1

for sago pith waste, while at 1629 and 1716 cm�1 for SPWAC. It is
noteworthy that the C@O drastically increases after sago pith
waste is turned into SPWAC with citric acid addition. Citric acid
as organic acid will enhance adsorption capacity because several
new sites are created on the SPWAC. Carboxyl from citric acid
donates a proton (H + ) and transforms a negatively charged car-
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boxyl group [70]. The absorption bands at 817 cm�1 for SPWAC and
767 cm�1 for sago pith waste attributed to alkenes (CAH). This is in
line with a study by Skoog, et al. [71], CAH appears at 995–
675 cm�1. CAH was also observed in sago waste activated carbon
with the addition of phosphoric acid and potassium hydroxide
[72]. As mentioned before, the peaks at 1718 and 1753 cm�1 corre-
sponded to C@O groups. The spectra around 3152 and 3256 cm�1

are indicative of OAH (hydroxyl) groups. The OAH is related to lig-
nin, cellulose, and hemicellulose content [73]. Carboxylic acids (R-
COOH) are formed from carbonyl and hydroxyl [74]. The absorp-
tion bands of CAO are shown at 1092 cm�1 for SPWAC and
1005 cm�1 for sago pith waste. Identical absorbance bands were
also observed in a previous study by Al-Swaidan and Ahmad
[75]. As shown from all the functional groups in Fig. 1, it can be
concluded that the SPWAC has more carbon than sago pith waste.
3.2. Adsorption

The adsorption effect of SPWAC on the artificial iron solution
can be seen in Fig. 2. The rate of adsorption is high at the initial
10 min. It indicates the majority of iron adsorption occurred during
the times. It is probably caused by a high Fe ion concentration at
the initial condition that leads to massively Fe ion mass transfer
into the abundant unoccupied active site[69]. Then, the rate of
adsorption drastically decreases at 20 – 60 min due to the high
concentration of Fe(III) ion at the surface and adsorbent pore, espe-
cially on active sites. It causes the adsorbent becomes saturated
and loses its ability to Fe(III) ion adsorption. In addition, it shows
the adsorbent reaches maximum adsorption capacity at 10 ppm
of Fe(III) ion concentration. Moreover, it proves that the adsorption
process depends on time, therefore contact time has an essential
role [76].

In this study, the highest removal efficiency is obtained more
than 80 %. This result is better than previous researches [77,78].
Comparison to other studies with different activating agent can
be shown in Table 1. Activating agent may influence the adsorption
performance by modifying surface area of adsorbent [79]. This con-
dition denotes the potential of SPWAC to be applied for treating
water with iron content. However, comprehensive studies are still
required for implementing the adsorbent in the scale-up case,
especially its interaction with another metal ion and dye.
Fig. 2. Remain concentration of Fe ions and percent of Fe ions removal.
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3.3. Kinetic studies

Pseudo-first order (PFO) and pseudo-second order (PSO) kinetic
were used to identify which model fitted well to the adsorption
data. The data was obtained from various sampling times. The
parameters of the models and calculated data are illustrated in
Table 2.

Fig. 3 shows the correlation between the PFO model and exper-
imental data. It is clear evidence that the model does not fit Fe(III)
adsorption experimental data. The PFO model is firmly related to
an un-equilibrium state that describes a slow and steady adsorp-
tion rate due to a few active sites in the adsorbent. It also eluci-
dates that at the initial stages of adsorption, the active sites are
nearly zero due to the high concentration of adsorbate at the initial
stage [84]. Thus, based on PFO characteristics, the present study
shows the concentration of adsorbate is relatively low. Meanwhile,
the unoccupied active site is abundant. Its characteristics belong to
the PSO model. Generally, the PSO model has several conditions
before it can be applied such as the final stages of adsorption,
abundant active sites and, low concentration of adsorbate. In this
research, the PSO model is fitted well to adsorption experimental
data. The same result and pattern are found in previous researches
[67,77,85]. Moreover, the kinetic constant and correlation coeffi-
cients (R2) of PSO are higher than PSO. It indicates the kinetic
adsorption of Fe(III) is better described by the PSO model [67].

PSO model characteristics is a good kinetic model to explain
about rapid adsorption that occurred at the initial stages of the
Fe(III) adsorption process. It is related to the abundant active site
that appears compared to adsorbate concentration in artificial
solution. This condition drives the adsorbate to adsorb at the active
site massively.

4. Conclusion

The study of characteristic and kinetic models of SPWAC during
the adsorption process was conducted. It found that the SPWAC
has been created successfully via carbonization and chemical acti-
vation procedures. FTIR analysis shows that the active sites have
formed by citric acid via chemical activation. It was proven by
increasing C@O absorbance intention. In addition, PSO kinetic
model fits well with adsorption experiment data. It has also con-
firmed that abundant active sites appear on the adsorbent. The
adsorbent exhibit a good performance with a removal efficiency
of more than 80 %. Therefore, the SPWAC promises to be applied
for treating industrial wastewater.
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Table 1
Comparison of heavy metal rejection using different biomass and activating agent.

Adsorbent type Rejection (%) Solution Activating agent References

Sago pith waste 81 Iron solution C6H8O7 This work
Sago 95 Mercury solution H2SO4 and (NH4)2S2O8 [63]
Robusta coffee waste 65.4 Iron content in peat water HCL [80]
Mango peel 84 Iron in Batik wastewater H2SO4 [81]
Albizia lebbeck seed 87 Lead solution HCL [82]
Banana Peel Activated Carbon (BPAC) 61 Chopper and chromium in textile waste solution NaOH [83]

Table 2
Parameters of the kinetic model for PFO and PSO at equilibrium time (60 min),
ambient temperature and pH 5.

Models Constant (k) Equilibrium (qe) Adjusted R2

PFO 0,0853(s�1) 81,87 (mg/g) 0.7638
PSO 8.6355 (g/mg.s) 81,58 (mg/g) 0.9999

Fig. 3. PFO vs PSO kinetic models.
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