Isolation of Nanocellulose from Aquatic Wetland Plant-Eleocharis dulcis

S. SUNARDI,^{1,4,*} W. T. ISTIKOWATI,^{2,4} D. I. SARI,³ D. H. Y. YANTO,⁵ A. KAMARI⁶

¹Chemistry Department, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarbaru 70714 Indonesia ² Faculty of Forestry, Lambung Mangkurat University, Banjarbaru 70714 Indonesia ³ Pharmacy Department, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarbaru 70714 Indonesia ⁴Wetland-Based Materials Research Center, Lambung Mangkurat University, Banjarbaru 70714, Indonesia ⁵ Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, Bogor, 16911, Indonesia ⁶Department of Chemistry, Faculty Science and Mathematics, of Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia

*E-mail : sunardi@ulm.ac.id

Abstract

Eleocharis dulcis (*E. dulcis*) is a sustainable wetland material available in enormous quantities in Kalimantan, Indonesia. Therefore, this study aimed to evaluate the suitability of the acid hydrolysis method for the isolation of nanocellulose of *E. dulcis*. The isolation process started with delignification, followed by the removal of hemicellulose to produce cellulose. The hydrolysis was performed at 45 °C for 60 and 120 minutes, respectively, using sulphuric acid. Furthemore the nanocellulose was characterized using Particle Size Analyzer, Fourier transform infrared spectroscopy and X-ray diffractions. The particle size analysis showed that the diameter of the obtained nanocellulose was affected by hydrolysis time. In addition, the X-ray diffractions results showed that the crystallinity index of the nanocellulose was 71.99% and 71.61% for the acid hydrolysis time of 60 minutes and 120 minutes, respectively. This study also demonstrated that the aquatic wetland plant, *E. dulcis* has a good potential for nanocellulose production in Indonesia.

Keywords: Eleoharis dulcis, nanocellulose, wetland-plant, acid hydrolysis