ISLT 2012

Proceedings of the 8th International Symposium

On

LOWLAND TECHNOLOGY

September 11 – 13, 2012 Bali, Indonesia

ORGANIZED BY

Civil Engineering Department, Hasanuddin University International Association of Lowland Technology Institute of Lowland and Marine Research, Saga University

Proceedings of the International Symposium on

LOWLAND TECHNOLOGY 2012

PEER REVIEWED

Editors-in-Chief: L. Samang, S. Pallu and T. Harianto

Associate Editors: S. A. Adisasmita, R. Djamaluddin and M. A. Abdurrahman

Published by:

Civil Engineering Department, Hasanuddin University

Tamalanrea, Makassar 90245, Indonesia

Tel: 62-411-587636 Fax: 62-411-580505

Email: office@civileng-unhas.org

URL: http://www.eng.unhas.ac.id/civileng-unhas.org

Every paper published in the proceedings was peer reviewed by two referees in the appropriate professional field.

The Department of Civil Engineering Hasanuddin University is not responsible for the opinion expressed by various authors in their contributions presented in the Proceedings.

ISBN:978-602-95227-1-6

Printed in Indonesia

COVER PHOTO (FRONT) SUNSET AT LOSARI BEACH, MAKASSAR (courtesy of A.Y. Baeda): LAKE OF HASANUDDIN UNIVERSITY, PURA ULUN AT BEDUGUL LAKE (BACK)

International Symposium on Lowland Technology ISLT 2010

Organizing Committee, Chairman: Prof. H. Araki (Japan)

Prof. D. T. Bergado (*Thailand*)
Prof. S. Hayashi (*Japan*)
Prof. K. Koga (*Japan*)
Prof. J.-C. Chai (*Japan*)
Prof. M. S. M. Kumar (*India*)

Prof. Y.-J. Du (*China*) Dr. F. H. M. van de Ven (*Netherlands*)

Prof. W. Liengcharernsit (Thailand)

Organizing Secretary:

Dr. M. Azizul Moqsud (Japan)

International Advisory Committee

Prof. M. R. Madhav (Chair, *India*)
Prof. C.-H. Koh (*Korea*)
Prof. H. B. Poorooshasb (*Canada*)
Prof. G.-X. Li (*China*)
Prof. S.-Y. Liu (*China*)
Prof. J. P. Carter (*Australia*)
Prof. J. R. Lund (*USA*)
Prof. V. Nelsanson (*Lunana*)

Dr. C. Don (Vietnam)

Dr. D. Eom (Korea)

Prof. Y. Nakamura (Japan)

Prof. K. Ohgushi (Japan)

Prof. M. Gan (Canada)

Prof. M. E. Grismer (USA)

Prof. M. Ohtsubo (Japan)

Dr. K. Omine (Japan)

Dr. J. Han (USA)

Prof. A. Sridharan (India)

Dr. O. Hoes (*Netherlands*) Prof. T. Tingsanchali (*Thailand*) Prof. Y. Hosokawa (*Japan*) Dr. N. Vongtanasunthorn (*Thailand*)

Prof. C. Hua (*China*) Prof. L. Xu (*China*)

Dr. S. Karnchanawong (*Thailand*) Prof. K. Yasuhara (*Japan*) Prof. T. Katsumi (*Japan*) Prof. N. Yasufuku (*Japan*)

Prof. Y. Kawakami (*Japan*) Prof. H.-H. Zhu (*China*)

Local Technical Committee, Chairman: Prof. L. Samang (Indonesia)

Prof. M. Selintung Dr. A. Amiruddin

Prof. M. S. Pallu A. Abdurrahman, MEng (Secretary)

Prof. H. Parung

St. Hijraini, MEng

Prof. W. Tjaronge

M.I. Ramli, MEng

Dr. T. Harianto (Co-Chair)

Dr. S. Burhanuddin

M. Hustim, MEng
S. Hamzah, MEng

Dr. A. B. Muhiddin
Dr. R. Djamaluddin
F. Elvira, MEng

Dr. S. A. Adisasmita

iii

Dr. A. Thaha Dr. S. Pamulu

Foreword

In many countries, its capital and major cities have been developed in low-lying area exposing to various stresses from nature and human treats. As a result, natural lowlands are turned into highly vulnerable area in safety, economic and environmental aspect. New record of the highest temperature and precipitation in many region of the world has challenged the knowledge and technology for protecting life, property, and ecological system in lowlands.

To achieve "Sustainability of Lowland to Climate Change and Natural Disaster", not only main themes as for previous ISLT like Geotechnical & Geo-environmental Engineering, Water & Environmental Engineering and City Planning and Management, but also new themes on Coastal Engineering and GIS Application for Lowland Management are concerned in the 8th International Symposium on Lowland Technology (ISLT2012).

In this year, the word "Lowlands" has brought together more than 100 researchers and engineers in related fields from 15 countries to share their great experience on coping with various problems in lowlands. Six outstanding speakers are invited to give one special lectures: Prof. D. T. Bergado (Miura Lecture); two invited lecture: Prof. D. A. Suriamihardja and Prof. W. Wangsadinata; and three keynote lectures: Prof. S. L. Shen, Prof. J. C. Chai and Dr. Olivier Hoes.

This symposium is organized by International Association of Lowland Technology (IALT) and Institute of Lowland and Marine Research (ILMR), Saga University with cooperation of Department of Civil Engineering, Hasanuddin University, Indonesia. I would like to extend my sincere appreciation to Prof. M. Madhav, the President of IALT, Prof. H. Araki the Chairman of the International Advisory Committee and Organizing Committee for their support.

I sincerely wish to express my gratitude to the International and Local organizing committee and all other staff of ILMR for their great contribution. Finally, I would like to thank all the authors for their participation. Without all of you, the symposium will never be successful.

Lawalenna Samang
Local Chairman of ISLT2012

President's Address

Institute of Lowland Technology (ILT) founded in 1991 and renamed as Institute of Lowland and Marine Research has come a long way. Apart from undertaking research and education in the specific areas relevant to problems and issues of lowlands all over the world but especially in the Asian Region, a major activity has been the conduct of International Symposia on Lowland Technology fondly referred to as ISLT. These Symposia offer a great opportunity for researchers, academics, policy makers, etc., who all are interested in studying the various issues of planning, development and management of lowlands to meet once in two years to exchange ideas and developments and to share knowledge for the common benefit of all. The need for interactions is felt continually with natural disasters striking almost all countries of the region. The saddest has been the catastrophic earthquake off the coast of Japan last year. The vulnerability of coastal areas has been once again exposed with the disastrous ten to twelve meter high Tsunami. Similar events in the other regions especially in Indonesia remind us all the need for continued research and study of coastal lowlands.

Following the successful conduct of ISLTs in Saga, Bangkok and Busan, the 8th Symposium in the series is a wonderful opportunity to meet in the picturesque island of Bali thanks to the great efforts of Prof. Samang, Dr Triharianto, Mr Abdurrahman, etc. The five major themes of "Geotechnical/Geo-environmental Engineering", "Water & Environmental Engineering", "City – Urban Planning & Management", "Coastal Environmental Science & Engineering" and "GIS Application for Lowland Management" with twenty seven subthemes would cover all or most of the relevant topics of interest to everyone. Prof. Bergado, the eminent researcher and personality has been invited to present the third Miura lecture. With several keynote and invited lectures the event promises to offer the best occasion to interact and get intellectually stimulated.

ILT and ISLT have been successful because of the foresight of the founders, in particular, Prof. Norihiko Miura. They have been fostered and nurtured by eminent personalities such as Prof. Poorooshasb, Prof. Hayashi, and the members of the Councils all these years. I would like to place on record the help, support and cooperation received from the Executive President Prof. Araki, Secretary General Dr Azizul Moqsud, Prof. Bergado, the conference organizers for the success of the symposium.

Wishing the Symposium a be great event to be remembered and cherished and looking forward to meet you all,

Madhav Madhira

President, IALT

List of Reviewers

The Editors would like to thank the following individuals for their assistance in refereeing submitted papers for ISLT 2012.

Prof. H. Araki

Dr. W. Liengcharernsit

Prof. L. Samang

Dr. T. Inohae

Dr. T. Harianto

Dr. O. A. C. Hoes

Dr. A. B. Muhiddin

Dr. D. Suetsugu

Dr. R. Djamaluddin

Dr. A. Thaha

Dr. S. A. Adisasmita

Prof. S. Asuri

Prof. H. Yamanishi

Prof. S. Pallu

Dr. N. Vongthanasunthorn

Prof. M. Selintung

Dr. M. Kinashi

Dr. M. Azizul Moqsud

Dr. T. Hino

Dr. B. Setiawan

Prof. W. Tjaronge

Prof. H. Parung

Dr. S. Pamulu

CONTENTS

SPECIAL LECTURE

THE MIURA LECTURE D. T. Bergado
KEYNOTE LECTURES
STATE OF PRACTICE OF JET GROUTING IN SHANGHAI: FROM TECHNOLOGY DEVELOPMENT TO SCIENTIFIC RESEARCH S. L. Shen, Z. F. Wang, Y. S. Xu and Y. H. Kum
CONSOLIDATION THEORY AND DEFORMATION ANALYSIS UNDER VACUUM LOADING J. –C. Chai and T. Hino
ACT OF DESPAIR OR FULL-FLEDGED EXPERIMENT: RETROSPECTIVE RESEARCH ON THE 1945 WIERINGERMEER FLOOD O.A.C. Hoes, R. W. Hut and M. Boomgaard
PART 1 GEOTECHNICAL/GEOENVIRONMENTAL ENGINEERING
CHAPTER 1: PROPERTIES OF SOILS (1)
LABORATORY AND FIELD STRENGTH OF CEMENT SLURRY TREATED ARIAKE CLAY Y. Igaya, T. Hino and JC. Chai4
EXPERIMENT ON FIBROUS PEAT SUBJECTED TO REDUCTION OF WATER CONTENT N. E. Mochtar and M. K. Wardani
CONSOLIDATION BEHAVIOR AND MICROSTRUCTURE OF BOTTOM SEDIMENT IN ISAHAYA BAY R. Jia, T. Hino, T. Hamada and J.X. Nie
PREDICTION FOR CBR UNSOAKED VALUE TO CBR SOAKED VALUE AND INDEX PROPERTIES OF CLAY-SAND MIXTURE OF PEKANBARU SOILS S. A. Nugroho, M. Yusa. and S. R. Ningsih
COMPARATIVE STUDY OF DETERMINATION OF LIQUID LIMIT BY PERCUSSION CUP, CONE, AND <i>Ko-</i> STRESS METHODS H. B. Nagaraj, A. Sridharan and B. V. Madhu
BASIC STUDY OF THE FUNDAMENTAL BEHAVIOR OF ARIAKE MARINE CLAY F. Usman, T. Hino, T. Negami, T. Harianto and R. Jia

CHAPTER 2 : GROUND IMPROVEMENT AND GEOSYNTHETICS (1)

PHASE ANALYSIS OF SEDIMENT DEPOSITION FROM FLOODING OF THE JOBARU RIVER USING GEOSLICER T. Hino, T. Ichihara, K. Ohgushi, R. Jia and T. Harianto	82
CHARACTERISTIC OF UNCONFINED COMPRESSIVE STRENGTH OF SANDY CLAY STABILIZED BY CEMENT MIXTURE SUGAR-PALM FIBERS P. Suroso, L. Samang, W. Tjaronge and T. Harianto	90
MICRO-STUCTURAL CHARACTERISTICS OF LIME STABILIZED BENTONITE A. Eisazadeh, K.A. Kassim and H. Nur	. 94
EFFECTS OF LIME MIXING ON COMPRESSIVE STRENGTH OF COMPACTED LIME-MIXED QUARRY DUSTS K. Nagai, D. Suetsugu and H. Hara	98
THE DEWATERING PROPERTIES OF DREDGED CLAY MIXED WITH STEEL SLAG J. Tajiri, K. Kasama, Y. Kasugai, K. Zen and G. Chen	102
BEHAVIOR OF FIBROUS PEAT SOIL STABILIZED WITH RICE HUSK ASH (RHA) AND LIME F. E. Yulianto and N. E. Mochtar	106
CHAPTER 3: LAND SUBSIDENCE	
BEARING CAPACITY OF REINFORCED FOUNDATION BEDS ON SOFT NON-HOMOGENEOUS GROUND K. Rajyalakshmi, Madhira R. Madhav and K. Ramu	111
EXPERIMENTAL TESTS AND NUMERICAL ANALYSES OF A SCALED SHALLOW FOUNDATIONS AT THE EDGE OF TRASS-SAND SLOPE WITH DR = 50% H. Wibowo, Y.A. Pranata and C. Stevanus	116
PHYSICAL AND NUMERICAL MODELLING OF THE MITIGATION OF SETTLEMENT DUE TO FOOTING INTERACTION IN CLAY R. Effendi	122
ANALYSIS OF REINFORCED SOIL WALL CONSIDERING STRESS DEPENDENT ANGLE OF SHEARING RESISTANCE S. K. Karthik, G. V. N. Reddy, M. R. Madhav and B. Umashankar	131
EFFECT OF SALT ON THE HYDRAULIC CONDUCTIVITY AND COMPRESSIBILITY OF THE TWO SOIL-BENTONITE MISTURES WITH DIFFERENT	
BENTONITE CONTENTS A. K. Mishra, M. Ohtsubo and T. Higahshi	136

CHAPTER 4: GEOENVIRONMENTAL ISSUES IN LOWLAND AREA

THE SUCTION PROFILE OF UNSATURATED CUT-SLOPE AT DIFFERENT HYDRAULIC CONDUCTIVITY DURING LOW INTENSITY RAINFALL Khalid Mahmood and Jin Man Kim	143
LONG-TERM INVESTIGATION OF SULFIDE CONTENT OF TIDAL MUD OF ARIAKE SEA S. Amamoto, D. Suetsugu, H. Hara and K. Katae	147
PHASE CONCEPT STUDY OF MUDFLOW INITIATION AT THE CIWIDEY TEA PLANT IN INDONESIA Shannon Hsien-Heng Lee and B. Widjaja	152
PORE-SIZE DISTRIBUTION OF LIME-TREATED SOIL UNDER SEAWATER H. Hara, D. Suetsugu and S. Hayashi	156
A NEWLY DEVELOPED CLIMATE CONTROL APPARATUS TO INVESTIGATE EVAPORATION BEHAVIOR J. Teng, N. Yasafuku, Q. Liu and K. Omine	161
THE INFLUENCE OF PLASTICITY INDEX ON THE SITE RESPONSE M. Khari, K. A. Kassim and A. Adnan	
SITE CHARACTERIZATION OF TAYTAY, PALAWAN, PHILLIPINESS RAINFALL TRIGGERED SHALLOW LANDSLIDE C. A. Bacosa, E. T. Calo and A. J. Reyno	173
CHAPTER 5: PROPERTIES OF SOIL (2)	
PERFORMANCE VARIATION DUE TO AIR VOID DISTRIBUTION IN OPEN-GRADED FRICTION COURSE PAVEMENT (OGFC) N. A. Qureshi, I. A. Qureshi and S. M. Jamil	184
UPSCALING SOIL WATER RETENTION FUNCTIONS USING PARTICLE SIZE DISTRIBUTION S. Liu, N. Yasafuku, Q. Liu, K. Omine and H. Hemanta	189
GCL/GM AND CLAYEY SOILS INTERFACE SHEAR STRENGTHS A. Saito, K. Sari and JC. Chai	
EFFECT OF CONCRETE WASTE AS STABILIZATION MATERIAL ON CBR VALUE AND SWELLING POTENTIAL OF EXPANSE SOIL M. W. Tjaronge, I. Maricar, A. B. Muhiddin and M. Sutiono	204
DISPLACEMENTS OF GPA IN NORMALLY CONSOLIDATED SOFT SOIL (UNDRAINED MODULUS INCREASING WITH DEPTH) B. Vidyaranya, M.R. Madhav and M. Kumar	208

THE STRENGTH PROPERTY OF SLAG-MIXED AND DEWATERED CLAY T. Takeshita, K. Kasama, Y. Kasugai, K. Zen, G. Chen	214
STUDY ON CLAY LINER CHARACTERISTIC OF SANITARY LANDFILL A. Zubair, L. Samang, and A. Kamal	218
CHAPTER 6: GROUND IMPROVEMENT AND GEOSYNTHETICS (2)	
CONSTRUCTION OF A LONG RAILWAY EMBANKMENT SUPPORTED BY THE PILED RAFT ON CLAY DEPOSITS S. G. Han, S. O. Song and S. K. Kim	227
PASSIVE PRESSURE ON RETAINING WALL WITH ROTATIONAL MOVEMENT MODES WITH ANOSOTROPIC SAND AS BACKFILL A. B. Muhidin and I. Ishibashi	233
EFFECT OF CREEP OF GRANULAR PILE ON RESPONSE OF GRANULAR PILE REINFORCED SOFT GROUND-EFFECT OF AREA RATIO S. Kandru, M, R. Madhav and E. C. N. Peter	245
ANALYTICAL SOLUTION FOR CONSOLIDATION OF SOILBAG CONSIDERING REAL FORM AND IMPEDED BOUNDARY B. Niu, X. W. Tang, X. L. Chen and H. Y. Wang	251
COMPARISON OF POLYESTER GEOGRID AND STEEL GRID FOR VERIFICATION OF MODIFIED K-STIFFNESS WORKING STRESS METHOD ON HARD PONDATION P. Baral, S. Duangkhae and D.T. Bergado	256
GREEN ENERGY FROM RICE PLANT MICROBIAL FUEL CELL IN ARIAKE SOIL M. A.Moqsud, K. Omine, M. Hyodo and Y. Nakata	263
PART 2 WATER/ENVIRONMENTAL ENGINEERING	
CHAPTER 1: GROUNDWATER CONTAMINATION AND MANAGEMENT	
BASIC STUDY ON WATER QUALITY MANAGEMENT IN THE RESERVOIR OF THE ISAHAYA BAY LAND RECLAMATION PROJECT Y. Mitsugi, N. Vongthanasunthorn, Y. Misima, K. Koga, H. Araki and P. Ittisukananth	267
DEVELOPMENT OF PHOSPHORUS RECOVERY SYSTEM USING NLDH K. Nakahara, H. Araki, Y. Mishima, Y. Matsuo and T. Turuhashi	
EFFECT OF CALCIUM AND MAGNESIUM IONS ON PERFORMANCE OF UASB SYSTEM S. Karnchanawong and S. Boonarsa	280

TSS VALUE AND ITS ROLE AS A BENCHMARK OF THE TAILINGS MANAGEMENT BY PT FREEPORT INDONESIA IN MODIFIED AJKWA DEPOSITION AREA,	Γ
TIMIKA, PAPUA B. K. Susilo, E. Sutriyono, R. H. Susanto and B. Setiawan	286
INFLUENCE OF RAINFALL PATTERN ON THE PREDICTION OF CONTAMINANT DISPERSION IN GROUNDWATER B. Kitikas, U. Duangduan and S. Sirivithayapakorn	291
EXPERIMENTAL MODEL OF INFILTRATION BEHAVIOUR IN ORGANIC SOIL H. Arfan	294
INTEGRATED LAKE WATERSHED MANAGEMENT AS A FRAMEWORK TO ACHIEVE A SUSTAINABLE DEVELOPMENT OF LAKE YURIRIA, MEXICO S. Silva, A. Bernal, M. Ortiz and G. Cuevas	301
RESOURCES CLIMATE MANAGEMENT IN ANTICIPATION OF THE IMPACT OF THE CLIMATE CHANGE FOR RICE PLANTING PATTERN IN NORTH SUMATRA K. E. Ramija and S. F. Batubara	
CHAPTER 2: WATER RESOURCES AND WATERSHED MANAGEMENT (1	l)
FOOD WEB STRUCTURE IN URBAN DRAINAGE CHANNEL AND ITS CONJUCT DITCH K. Hiramatsu, T. Sakaida, K. Yonebayashi, E. Ichion, T. Onishi and S. Nishimura	316
NUMERICAL SIMULATION AND ANALYTICAL VALIDATION FOR TRANSIENT TEMPERATURE DISTRIBUTION IN AN AQUIFER THERMAL ENERGY STORAGE SYSTEM S. Ganguly, N. Seetha and M. S. M. Kumar	322
RESPONSE AND MEASURES TO STRONG INTENSITY RAIN FALL OF SAGA LOWLAND	
H. Araki, Y. Mishima, K. Yano, S. Ikari and S. Srinivasulu	331
WATER FOOTPRINT OF THAILAND'S FOOD INDUSTRY: CASE STUDY OF RICE NOODLES PRODUCTIONS P. Ittisukananth	335
GREEN ROOF AS A POTENTIAL SUSTAINABLE STRUCTURE FOR RUNOFF REDUCTION	
H. Kasmin and S. Musa	341
ANN BASED PREDICTION AND SENSITIVITY ANALYSES OF MAXIMUM DRY UNIT WEIGHT AND OPTIMUM MOISTURE CONTENT VALUES OVER A LARGE RANGE	
S. Srinivasulu, V. Padmayathi, H. Araki, S. Rorzoogi, and M. R. Madhay	3/16

CHAPTER 3: WASTEWATER TREATMENT AND WATER PURIFICATION

EFFECT OF OZONATION ON ORGANIC COMPOUNDS IN BREWERY WASTEWATER P. Suwanvitaya and S. Jodpimai	353
TURNED WINDROW COMPOSTING FOR ZERO DISCHARGE OF MULBERRY PULP WASTEWATER	
B. Jolanun and C. Chiemchaisri	358
THE WATER QUALITY AND MANAGEMENT PLAN OF BATUR LAKE BALI INDONESIA	
I W. Arthana and I W. Restu	363
PREDICTION OF DISSOLVED IRON (FE) CONCENTRATION USING INTEGRATED HYDRODINAMIC AND WATER QUALITY NUMERICAL MODEL ON BARAMBAI TIDAL SWAMP RECLAMATION CHANNEL R. Riduan	372
APPROPRIATE TECHNOLOGY IN PROVIDING CLEAN WATER FROM WASTEWATER OF SASIRANGAN Q. Sholihah, R. Setyaningrum and L. Marlenae	
POTENTIAL RISKS AND RETURNS OF USING SHALLOW GROUND WATER FOR SECONDARY CROPS ON LOWLAND PADDY FIELDS IN INDONESIA: CASE STUDY IN SOUTH SULAWESI D. Useng, M. Achmad, Suhardi, A. Munir and Darmawan	201
D. Useng, M. Acnmaa, Sunarai , A. Munir ana Darmawan	381
APPROPRIATE TECHNOLOGY WATER SUPPLY USING WATER HYACINTH AND BLADYGRASS AS A BIOMASS FILTER ON DIAMOND MINING WATER CEMPAKA DISTRICT BANJARBARU	200
R. Setyaningrum , Q. Sholihah and L. Marlina	389
CHAPTER 4: WATER POLLUTION IN RIVER AND LAKE	
STRUCTURE OF MACROINVERTEBRATES IN OXBOW LAKES DIFFERED	
BY CONNECTIVITY WITH THE LOWLAND LYNA RIVER (CENTRAL EUROPE)	
K. Obolewski, K. G. Lewczuk, A. Strzelczak, S. Kobus and J. A. Dunalska	394
THE IMPACT OF THE CLIMATE ON THE EFFECTIVNESS OF THE LAKE RESTORATION BY THE HYPOLIMNETIC WITHDRAWAL METHOD	
J. A. Dunalska, G. Wisniewski, K. Glinska-Lewczuk and K. Obolewski	406
EVALUATION AND OPTIMIZATION OF HANDEEL AS PUBLIC WATER CANALS ON BANJARESE TRADITIONAL TIDAL PADDY RICE FIELD SYSTEM	
M. A. Noor, N. Helda and Y. F. Arifin	412
STUDY ON THE HABITAT DISTRIBUTION OF ILYOPLAX DESCHAMPSI IN A TIDAL AREA OF THE USHIZU RIVER, JAPAN	
K. Nishimura and H. Yamanishi	418

DEVELOPMENT OF MATHEMATICAL MODELS FOR FLOOD ROUTING IN THE UPPER PING RIVER BASIN, NORTHERN THAILAND A. Kamsai, P. Ittisukananth and W. Liengcharernsit	. 423
CHAPTER 5: WATER RESOURCES AND WATERSHED MANAGEMENT (2)	
EFECTIVENESS OF COLLABORATION-BASED WATERSHED MANAGEMENT: THE OREGONIAN WATERSHED COUNCILS EXPERIENCE S. Silva, P. Kay, M. Ortiz, A. Bernal and C. Gutierrez	. 432
SIMULATION OF GROUND WATER CONTOUR AT COASTAL AREA SOUTH SULAWESI A. Munir, Syamsuddin, C. Suhardi and M. Achmad	440
ESTIMATING WATER RESOURCES EXPORT FROM MOUNTAINS DAM WATERSHED INTO SAGA PLAIN, JAPAN C. Supit and K. Ohgushi	455
NUMERICAL MODELS ANALYSIS ON THE USE OF SAND COLUMNS AT RECHARGE RESERVOIR A. Azis, S. Pallu, A. Thaha, A. Sumakin and Sugiharto	
ANALYSIS OF WATER SUPPLY NETWORK PLANNING IN DISTRICT OF RANTEPAO SUBDISTRICT OF NORTH TORAJA J. Patanduk and Denny C. S.	
ANALYSIS ON SOIL ABSORPTION OF TELKOMAS REGION, BIRINGKANAYA DISTRICT, MAKASSAR CITY M. Selintung and J. Patanduk	
AN INTEGRATED RAINFALL, HYDROLOGICAL AND FLOOD INUNDATION MODEL FOR KOTA TINGGI, MALAYSIA CATCHMENT M.R.M. Adib, T.Wardah, A.Noratina, I.H.Lokman, M.B.Saifullizan, D.Rokiah, A.Junaidah	481
PART 3 CITY/URBAN PLANNING AND MANAGEMENT	
CHAPTER 1: URBAN DESIGN AND DEVELOPMENT PLANNING (1)	
A STUDY ON EFFECT FACTORS OF THE LOCATION OF DESIGN SERVICES COMPANIES- A CASE IN HANGZHOU S. Luo, X. Hu and B. Sun	. 506
RESPECTING THE HISTORICAL SPIRIT AND EXPLORING THE CONTEMPORARY CONNOTATIONTAKE THE REBUILDING XILING IN XIIX WETLAND OF HANGZHOU, ZHEJIANG, CHINA	
J. H. Wu and F. Chen	. 510

A FURECAST OF ZHOUSHAN URBAN DEVELOPMENT BASED ON THE	
BACKGROUND OF "ZHOUSHAN ARCHIPLEAGO	
R. Zhang and L. Xu	517
LABOR MANAGEMENT INFORMATION SYSTEM IN CONSTRUCTION PROJECT	
M. Tanubrata, S. K. Yefta and F. H. Halim	521
GIANT SCALE IN NEW DEVELOPED URBAN DISTRICTS	
N. P. Hu	527
TRANSFORMATION MECHANISM AND THE CULTURAL CONNOTATIONS	
OF CONTEMPORARY SELF-BUILT HOUSING IN HANGZHOU Z. Bo and H. Yong	532
Z. BO ana H. 10ng	332
A STUDY ON PREFERENCE FOR FINAL RESIDENCE TAKING INTO	
CONSIDERATION THE NECESSITY OF NURSING-CARE: A CASE STUDY IN	
LOCAL REGION, HITACHI-CITY	
M. Kinashi	537
THE INFLUENCE OF CLIMATIC FACTOR ON BUILDING STRUCTURAL DESIGN	
AND HOUSEHOLD ELECTICITY CONSUMPTION IN BANGKOK AND ITS	
VICINITY, THAILAND	
C. Pratchayawutthirat, W. Gao and P. Iamtrakul	543
C. 1 Taichaya wanna tai, 11. Odo ana 1. Tamiranan	5 15
CHAPTER 2A: COASTAL AND WATER FRONT PLANNING	
IMPACT OF URBAN DEVELOPMENT TO COASTAL BANTIK SETTLEMENT IN	
MALALAYANG, INDONESIA P. P. Egam, N. Mishima and T.Y.W. Subroto	551
F. F. Egam, W. Mishima and T.T.W. Subrolo	554
ECONOMICAL ANALYSIS OF TRAFFIC CONGESTION IN DHAKA CITY	
T. Khan	561
REVITALIZATION OF URBAN WATERFRONT A STUDY FOR THE REGENERATION	
OF HANGZHOU HISTORICAL DISTRICT "CANAL PARADISE"	
Y. Hong, C. Hua and H. Yan	568
1. 110ng, C. 11ua ana 11. 1un	500
NEW TOWN PHENOMENON AND ITS CHARACTERISTICS IN PLANNING AND	
DESIGN OF THE YANGTZE RIVER DELTA MEGALOPOLIS	
Y. Zhou, K. Wang and L. Xu	574
AN OPTIMIZED INVESTMENT METHODOLOGY FOR SUSTAINABLE	
REHABILITATION OF ROAD INFRASTRUCTURE IN LOWLAND AREAS	
M. Yadollahi, R. M. Zin and A. Adnan	580
11. 1000 com, 1. 11. Dit wiw 11. 1101001	500
DRIVING CYCLE OF PASSENGER CARS ON HETEROGENEOUS TRAFFIC	
SITUATIONS : CASE STUDY ON AN URBAN ROAD IN MAKASSAR, INDONESIA	
S. H. Alv. M. I. Ramli and T. Sumi	586

CHAPTER 2B: URBAN DESIGN AND DEVELOPMENT PLANNING (2)

RESTRUCTURING AND PRESERVATION OF HISTORICAL BUILDING AND ENVIRONMENT :- A CASE OF RESIDENTIAL IN WESTLAKE , HANGZHOU, CHINA	
T. Tanachawengsakul, D. Jia, P. Iamtrakul, Y. Ishimaru, K. Hokao and W. Jie	592
LABOR MANAGEMENT INFORMATION SYSTEM IN CONSTRUCTION PROJECT M. Tanubrata , S. K. Yefta and F. H. Halim	604
INVESTIGATING THE LOW-INCOME SETTLEMENT IN AN URBANIZATION AND URBAN FORM A CONSEQUENCES OF BANGKOK GROWING CITY, THAILAND U. Shummadtayar, H. Kazunori and P. Iamtrakul	610
TOURISM ORIENTED RURAL COMMUNITY PLANNING FROM THE PERSPECTIVE OF URBAN-RURAL INTEGRATION A CASE STUDY OF RURAL CONSTRUCTION IN ANJI, ZHEJIANG	620
PW. Sun, Z. Wang and Y. He	620
THE SPACE PLANNING AND DESIGN OF COMMUNITIES UNDER NEW TOWNS CONSTRUCTION PROGRAM IN NORTHERN ZHEJIANG PLAIN, CHINA Z. Qian, Z. Wang and L. Wang	626
RESEARCH OF CO2 EMISSION OF CAMPUS BUILDINGS BASED ON LIFE CYCLE ASSESSMENT TAKING ZHEJIANG UNIVERSITY FOR EXAMPLE H. X. Ang , C. Wei. and Q. L. Juan	631
REVIEW ON PEOPLE'S LIFESTYLE AND ENERGY CONSUMPTION IN ASIA COMPARISON STUDY OF INDONESIA, THAILAND, AND CHINA D. Novianto, G. Weijun, C. Pratcayawuthirat and J. Yanqi	635
CHAPTER 3A: URBAN DESIGN AND DEVELOPMENT PLANNING (3)	
SUB-URBAN LOW-LYING AREA CONVERSION DUE TO THE HOUSEHOLD EMERGING IN COLOMBO METROPOLITAN REGION OF SRILANKA GPTS Hemakumara and R. Rainis	642
TRANSITION OF AGRICULTURE AREA IN TO SUSTAINABLE INDUSTRIAL CITY A. Cahyaningsih	648
RESEARCH OF ZHOUSHAN CORRIDOR PLANNING BASING ON THE CULTURE RESOURCE L. Huang, Y. He, F. Wen and P. Shen	655
	033
SUBURBAN COMPOSITE LANDSCAPE CORRIDOR DESIGN STUDY OF DINGHAI DISTRICT IN ZHOUSHAN	
F. Wen, Z. Wang and Y. He	659

THE CHARACTERISTIC ANALYSIS OF HISTORIC DISTRICT REVIVAL IN SANJIANGKOU: A CASE STUDY ON TIANYI SQUARE AND THE OLD BUND S. Ye and X. Lei	664
ON THE CITY SPACE PATTERN AND ORGANIC RENEWAL DESIGN OF JINGNING, ZHEJIANG PROVINCE X. Xiaodi and Z. Yuheng	670
EVALUATION AND ANALYSIS OF FIRE SAFETY PERFORMANCE IN COMMERCIAL COMPLEX J. Shi	677
RURAL PLANING IDEAS UNDER THE CONCEPT OF "CITY SLOW" N. Shuwen, W. Zhu, T. Yiqi and W. Ling	686
LAND USE AND POPULATION CHANGE DYNAMICS IN NORTH-EASTERN CEBU CORRIDOR H. Zanoria , A. Diola , R. Villavelez and O. Mana	692
CHAPTER 3B: TRANSPORTATION PLANNING FOR SUSTAINABLE DEVELOPMENT	(3)
SUSTAINING FUTURES OF URBAN MASS TRANSIT IN BANGKOK P. Iamtrakul	709
POROUS ASPHALT,,S CONTRIBUTION ON ROAD SAFETY AND ENVIRONMENT N. Ali , M. I. Ramli and M. Hustim	719
THE OPERATION EFFECTIVENESS EVALUATION OF HANGZHOU QIANJIANG NEW CONSTRUCTION RIVERSIDE WALKING SPACE BASED ON POE ANALYSIS Y. Lu and L. Xu	725
ANALYSIS ON NEW CHARACTERISTICS OF DEVELOPMENT ZONE IN YANGTZE RIVER DELTA REGION OF CHINA C. Zhiyu and X. Lei	732
RESEARCH OF THE MECHANISM OF THERMAL BRIDGE IN SELF-INSULATION SYSTEM IN HOT SUMMER AND COLD WINTER AREAS N. D. Jia, B.J. Ge and C. D. Ying	741
A STUDY ON EFFECT FACTORS OF THE LOCATION OF DESIGN SERVICES COMPANIES- A CASE IN HANGZHOU S. Luo , X. Hu and B. Sun	744
REVITALIZATION OF URBAN WATERFRONT A STUDY FOR THE REGENERATION OF HANGZHOU HISTORICAL DISTRICT "CANAL PARADISE" Y. Hong, C. Hua and H. Yan	750
ANALIZING THE LEVEL OF SERVICE OF THE JAKARTA ROAD NETWORK	756

CHAPTER 4 : CREATIVE RESTRUCTURING AND PRESERVATION OF URBAN ENVIRONMENT

AMPHIBIOUS URBANIZATION AS A FLOOD MITIGATION STRATEGY FOR LOW-LAND AREA	
M. A. Nekooie, M. I. Mohamad and Z. Ismail	762
IMPLEMENTATION OF THREE_DIMENSIONAL URBAN SYSTEM IN THE REGENERATION OF HANGZHOU CITY CENTER Z. Yingsheng, Z. Yijun and G. Yujiang	769
ECOLOGY, PRODUCTION AND LIVING: RESEARCH ON THE PLANNING AND CONSTRUCTION OF RURAL FEATURES BASED ON THE EPL SYSTEM C. Xu, Z. Chai and Y. Gao	773
THE STATUS QUO OF LOW-CARBON CBD DEVELOPMENT IN CHINA M. Zhiyuan and X. Lei	781
ECOLOGICAL MATERIALS FOAM GLASS, THE PROPERTIES AND THE APPLICATION IN MODERN ARCHITECTURE F. Wang and W. Li	786
AN ALTERNATIVE APPROACH FOR CLARIFYING ELDERLY PEOPLES ACTIVITY AND DESIRABLE LAYOUT OF URBAN FORM T. Inohae, T. Nagaie and K. Hokao	792
SOUNDSCAPE TIMING DESIGN IN CHINESE CLASSICAL GARDENS A CASE STUDY OF GEYUAN GARDEN G. Min and G. Jian	800
CHAPTER 5: STRUCTURAL ENGINEERING AND ECO-MATERIAL	
PRELIMINARY STUDY OF THE UNIQUE TOPOGRAPHY AS MITIGATION AGAINST TSUNAMI HAZARD U. Fadly, B. K. Eddi and H. Septiana	809
MERAPI VOLCANIC ASH AS AN ECO-MATERIAL OF CONCRETE FILLER I. Bali and F. Sitorus	815
FLEXURE BEHAVIOR OF RC BEAMS STRENGTHENED WITH CERP GRID A. A. Amiruddin	819
CONDITION ASSESMENT OF REINFORCED CONCRETE BUILDING W. Wuryanti	826
FLEXURAL CAPACITY OF CRACKED CONCRETE BEAMS STRENGTHENED USING GFRD SHEET	000
R. Djamaluddin, T. Harianto and A. M. Akkas	832

THE RESEARCH OF RURAL SPATIAL FORM BASED ON THE PRINCIPLE OF ECO-FEEDBACK MECHANISMTAKING ZHEJIANG PROVINCE AS AN EXAMPLE W. Tao and W. Zhu	839
SIMULTANEOUS MODELLING EFFECT OF JOB DESIGN AND ORGANIZATIONAL CULTURE ON THE EMPLOYEE'S PERFORMANCE OF INFRASTRUCTURE CONSULTANT SERVICES IN INDONESIA N. Hamid	845
CHAPTER 6: TRANSPORTATION PLANNING FOR SUSTAINABLE DEVELOPMENT	(2)
ENVIRONMENTAL ASSESMENT TOOL FOR SINGLE LANDED HOUSE AS AN APPROACH TO MANAGE RAPID URBAN HOUSING DEVELOPMENT V. Fauzianti	854
THE CHOICE OF CONSTRUCTION LAND IN COASTAL CITIES BASED ON SCENARIO PLANNING Y. Gao, W. Li and W. Yu	859
A STUDY ON THE CHANGES OF WATERWAY IN CENTRAL AREA OF HANGZHOU BASED ON THE HISTORICAL MAPS X. Bing and W. Hui	868
LEACHABILITY OF HEAVY METALS FROM FIRED CLAY BRICKS INCORPORATED WITH CIGARETTE BUTTS A. A. Kadir and A. Mohajerani	874
A BUILD-OPERATE-TRANSFER MODEL PROPOSED FOR DEVELOPMENT OF INDONESIAN AIRPORTS S. Hamzah and S. A. Adisasmita	
THE RESEARCH IN LANDSCAPE STYLE DESIGN ALONG CRANE CREEK RIVER IN JINGNING, ZHEJIANG PROVINCE W. Jieqiong and Z. Yuheng	
CALCULATION METHOD RESEARCH OF ENERGY CONSUMPTION AND CO2 EMISSION OF BUILDINGS IN ZHEJIANG PROVINCE BASED ON LIFE CYCLE ASSESSMENT	50,
Z. Yun, Y. Yan, G. Min and G. Jian	893
THE CONTROLLING AND PREVENTING STRATEGIES OF ACID RAIN POLLIBASED ON ECOLOGICAL INFRASTRUCTURE PLANNING: A CASE STUDY OF TAICUTY	
J. Wang, J. Jiang and C. Zhang	904

PART 4 COASTAL ENVIRONMENTAL-SCIENCE AND ENGINEERING

CHAPTER 1 : PROTECTION, PREVENTION OR MITIGATION OF COASTAL ENVIRONMENTS

INFLUENCE OF UNDERWATER SILL LAYOUT AGAINST FLOW PATTERNS IN ORDER TO REDUCE SEDIMENTATION IN NAVIGATION CHANNEL AND BASINS	
T. E. Bhakty, T. S. Putri, N. Yuwono, R. Triatmadja and B. Triatmodjo	12
RHEOMETRIC CHARACTERIZATION OF THE FLUID MUD FORMING POTENTIAL OF A BAY MUD	
F. Samsami, Y. P. Khare and A. J. Mehta	17
LEARNING MEDIA OF RUBBLE-MOUND BREAKWATERS DESIGN O. Pattipawaej, Sinatra and K. T. Tanamal	22
THE MANGROVE CONSERVATION APPROACHED FROM PEOPLE SIDES IN LAGOON OF SEGARA ANAKAN	
P. Sudjono and Z. Perdana	30
FLUIDIZER SYSTEM DESIGN FOR MAINTENANCE DREDGING: A CASE STUDY ON THE RIVER MOUTH SURROUNDING BANTAENG COASTLINE, INDONESIA M. A. Thaha. N. Yuwono and R. Triatmadja	36
NATURAL SUCCESSION VEGETATION AREA CHARACTERISTICS IN THE TAILINGS DEPOSITION AREA OF PT FREEPORT INDONESIA AT PAPUA INDONESIA Y. Windusari, Z. Dahlan, I. Yustian and P. Puradyatmika)44
ACCUMULATION OF HEAVY METALS IN COASTAL SEDIMENT; CHONBURI TO PATTAYA COAST LINE	
S. Khuntong, W. Sudprasert, P. Sittipo 1 and S. Treerat	51
CHAPTER 2 : MONITORING AND MODELLING IN ESTUARIES AND COASTAL AREAS	
A STUDY ON IMPACT OF STROM SURGE BY TYPHOON PAT (T198513) IN SAGA LOWLAND AND SURROUNDINGS USING HYDRODYNAMIC NUMERICAL MODELLING A. K. T. Dundu and K. Ohgushi	
MODELING SEDIMENT TRANSPORT FOR BAU-BAU ESTUARY, INDONESIA A, Asri, M. A. Abdurrahman and St. Hijraini	69
STUDY ON DISSOLVED SILICA IN THE ARIAKE SEA USING THE FINITE VOLUME MODEL	
N. Vongthanasunthorn, Y. Hamazaki, Y. Mitsugi, and K. Koga	73
SHORELINE BEHAVIOUR AROUND THE INLET OF IMAGIRE-GUCHI A. S. Mustari, S. Kato and S. Aoki	79

PART 5 GIS Application for Lowland Management	
LANDSLIDE SUSCEPTIBILITY MAP USING BIVARIATE STATISTICAL ANALYSIS, A CASE STUDY IN BOGOTA A. H. Souri, A. Abedini and S. Parang	991
REMOTE SENSING IMAGE-BASED ANALYSIS OF THE URBAN HEAT ISLAND IN DENPASAR, INDONESIA Abd. R. As-syakur, I W. Nuarsa, I W Arthana, M. S. Mahendra1, I W. S. Adnyana, I N. Merit, R. Suyarto, and K. A. Lila	997
MEASURING LAND SUBSIDENCE OF MAKASSAR CITY USING DINSAR OF JERS-1 IMAGES I. Alimuddin , L. Bayuaji , J. T. S. Sumantyo and H. Kuze	1005
TRACE ELEMENT SPATIAL ABUNDANCE MAPPING IN GROUNDWATER OF PARAVANAR SUB BASIN, TAMIL NADU, INDIA USING GIS TECHNIQUE S. Aravindan, K. Shankar and B. Poovalinganganesh	1010
A STUDY ON ECO-ENVIRONMENTAL CHANGES OF WETLAND RESOURCES OF HAKALUKI HAOR IN BANGLADESH BY USING GIS TECHNOLOGY M. J. Uddin, A. S. M. Mohiuddin and S. T. Hossain	1021
WEB-GIS DATABASE MODEL APPLIED IN POLDER BANGER S. Darsono	1026
ELASTO-PLASTIC BEHAVIOR OF RC FRAMES COMPOSED OF TUBED REINFORCED CONCRETE SHORT COLUMNS AND SPANDREL WALLS Nasruddin and A. Kawano	
FLOODWATERS AT THE TALLO RIVER FLOWS USINGGEOGRAPHIC INFORMATION SYSTEMS (STUDIES CASE MAKASSAR CITY) M. P. Hatta, M. S. Pallu and I. Hadi	1040
MAPPING THE LOCATION OF ARTERIAL ROAD CONGESTION AND HIGHWAY PERFORMANCE – BASED QUANTUM GIS OPEN SOURCE IN MAKASSAR CITY, SOUTH SULAWESI S. Rauf, S. A. Sasmita, St. Hijraini and A. R. Djamaluddin	1044
EFFECTS OF ORGANIC ACID TREATMENT ON CHEMICAL AND MECHANICAL CHARACTERISTICS OF TIDAL MUD OF ARIAKE SEA K. Katae, D. Suetsugu, H. Hara and S. Amamoto	
ESTIMATION OF WEAKZONES USING GEOSTATISTICAL APPROACH ON DEPOSITION AREA LEEVE B. Setiawan, F. Hadinata, Z. G. Fad and U. S. Minaka	1055

MODELING OF WAVE INDUCED CURRENT AND BEACH MORPHOLOGY CHANGE

ESTIMATION OF GHG EMISSION ON URBAN SOLID WASTE MANAGEMENT	
USING EVENT TREE ANALYSIS APPROACH	
F. Hadinata, D. P. Apriadi and B. Setiawan	1060
KENAF WOVEN LIMITED LIFE GEOTEXTILES (LLGS)	
REINFORCEMENT INTERACTION BY PULLOUT AND DIRECT SHEAR TESTS	
S. Artidteang, D. T. Bergado, T. Tanchaisawat and S. Chaiyaput	1066
AN ANALYSIS OF FACTORS AFFECTING THE QUALITY OF SERVICE AND	
SATISFACTION AND THEIR IMPACT ON THE LOYALTY OF PUBLIC	
TRANSPORTATION USERS IN SULAWESI	
L. B. Said	1072

EVALUATION AND OPTIMIZATION OF HANDEEL AS PUBLIC WATER CANALS ON BANJARESE TRADITIONAL TIDAL PADDY RICE FIELD SYSTEM

M. A. Noor¹, N. Helda² and Y. F. Arifin³

ABSTRACT: Handeel is a Banjarese local term for public water canals, which actually came from dutch language "andeel", means a straight line canal made by a group of people/society/village community, had a function in delivering water from rivers to a paddy field. The system has established since the era of dutch colonialization, then treated and modernized by Indonesian government during 1970's. Unfortunately, even though the system has implemented for 40 years, the current development of this tidal irrigation system were stack or rise very slowly. Since then it is necessary to evaluate the base characteristics of the existing canal system, ie. Hydraulic capacity, tidal paddy field type, hydrotopography, and probability for implementing advanced methodology in farming system. After the basic problem found, then continued with the optimization on existing Handeel to improve the best benefit for farmers. The study area covers about 20 Handeel as secondary/tertiary canal system in anjir Tamban Primary System which supply water distribution to 3000 hectares paddy fields. The study gives the information about the lack of important water structures (levees, folders, control boxes, culverts, etc.) as the main cause of Handeel problem. The second problem is about the soil property which still poor even though the land has already washed and leached from the poisonous matter such as sulfate acid with tidal movement through paddy field. And the third is caused by poor water management as excess from the first reason.

Keywords: Handeel, canals, tidal paddy field

INTRODUCTION

The 3000 hectares of Survey, Investigation and Design (SID) for Public Handeel site plan in the tidal reclamation area is located on geographical coordinates of: 3°13' to 3°16' South Latitude and 114°21' to 114°25 East Longitude. The site plan of the net 3400 hectares lies at the southwest of the area which is known as Pulau Petak delta. It is river estuary lowland which covers about 240 thousand hectares of tidal swamp area, which is bounded by Barito River system in the east, Kapuas River in the west and the Java Sea in the South. Specifically, Public Handeel scheme area is located in the east of Kapuas River, with Anjir Tamban Canal as Primary System and some of secondary canals (North Secondary Canal and South Secondary Canal).

Traditional planting method are conducted by Banjarese people which take place in the area that extend out over the land 5 km far away from the edge of the tidal river. Initially, there were a lot of natural canals along the tidal river, which have interval ranging from 200-700 m.

Banjarese farmers, in the beginning, tried to upgrade the canal function (known as Handil) to be improved drainage canal as well as the supply canal to provide water for their farming land. This upgraded canal system has been reached 2 km effectively into the land. Unfortunately, in the next development, the water level limit was too high so that it is impossible to plant the crop in the rainy season.

Swamp Recclamation Project which was organized by the Dutch Government since 1910 (East Indies Government), was indicated by the construction of big connecting canal (known as Anjir Serapat) which connects Barito River and Kapuas River with two purposes: as a land drainage and transportation means, respectively. In 1955, Anjir Tamban was built by the Indonesian Government.

After that, Banjarese farmers made numerous small canals which lie vertically to that Anjir with the same interval as natural canals.

¹ Lecturer at Civil Eng. Dept., Eng. Faculty, Lambung Mangkurat Univ., Banjarmasin, Kal-Sel, INDONESIA

² Lecturer at Civil Eng. Dept., Eng. Faculty, Lambung Mangkurat Univ., Banjarmasin, Kal-Sel, INDONESIA

³ Lecturer at Civil Eng. Dept., Eng.Faculty, Lambung Mangkurat Univ., Banjarmasin, Kal-Sel, INDONESIA

Tabel 1:Dates of Construction of Swamp Recclamation Project.

Scheme	Year
Lahan Spontan	•••••
Anjir Serapat	1915
Anjir Tamban	1955
Anjir Talaran	1969
Barambai	1969
Belawang	1975
Sei Muhur	1976
Tabunganen	1977
Sakalagun	1978
Seluang	1979
Puntik Terantang	1981
Puntik Danda Besar	1981

OBJECTIVES

The objective of SID project for Public Handeel is to make a detail design of Rehabilitation Plan of Swamp Recclamation Network which covers:

Indentify the potencies and the constraints appear on the location consist of technical, agriculture, socialeconomic and environmental aspect respectively. Then, try to formulate the development plan for supporting the farmers' welfare and to provide job opportunities in accordance with the neighbouring area.

Evaluate the existing canal network, whether natural or man made canals and to plan drainage/irrigation canal network for the development of the previous objective.

RESEARCH METHODOLOGY

For implementing the tidal swamp reclamation, it used abbreviation of SIDLACOM frequently. This abbreviation explains the stage of the swamp reclamation project in sequence as follows:

S - Survey

I - Investigation

D - Design

L - Land

A - Acquisition

C - Construction

O - Operation

M - Maintenance

For the swamp development projects, SID are the first 3 stages after the project identification. Usually, the project has been identified by government institute or private company. Project identification will explain the

project space boundaries, goals and types of the planned areal development and also covers investigation of particular subject or established plan works. The project can be the opening of new areas, undeveloped areas or rehabilitation and upgrade the existing canal network.

The activity of SID with Government funding, usually, are the responsibility of the Department of Public Works. They can give it all or some of it to the private organizations which are the technical consultants or private institutions.

During the SID process, important decisions were made which include the targeted constructions and the type of planned physical work. The decisions were made by consulting with other institutions involved in the areal development, also with the community.

The order of the SID process are shown here:

Preliminary

Field Survey

Data Analysis

System Planing

Report

All the criteria and specification are in the correspodence with the hydraulic means.

RESULTS AND DISCUSSIONS

Public Consultation Meeting

Location:

Darul Mu'minin Mosque, Tamban Baru Tengah Village The participants:

Coordinator of PPL BPP of Agriculture Department Tamban Catur District, Farmer Group Represntatives from 4 villages at Tamban Catur District.

The results of the meeting are written below:

- 1. Tamban Baru Mekar village
- Many of Handil canals are blocked and grass growth
- People reject the dredging of the canal
- People hope for worm canal to be built
- Most of water gates are not operated
- People are not use water transportation.
 - 2. Tamban Baru Tengah village
- People want the dredging and worm canals made
- People want water gate to be built in the downstream of the canal.
- Irrigation canals are not exist
- Water channels are built under the farmer road.
 - 3. Tamban Baru Timur village
- People want the dredging dan street hardening
- Many people use water transportation
- Irrigation canals and water gates are functioning properly

- People want the improvement of the farmer road
- People want the solution of the plant disease
 - 4. Tamban Baru Selatan village
- People want the solution for the water acidity
- People want the solution of the plant disease
- People want the dredging and the improvement of the farmer road
- The head of the village hope to make the canal longer than before.

Water System Boundary

Based on the lay-out of water system, the Public Handeel Water System can be defined as some stages as follows:

Delta Water System: Delta Pulau Petak Water System Macro Water System: Anjir Tamban Water System Meso Water System: Public Handeel Water System Micro Water System: Handil Rice Field Water System

The Public Handeel Macro Water System in the study area is boundary with Jelapat Fork-liked Water System, Tabunganen Fork-Liked Water System Lupak Primary Channel (A1-A4) as shown in Figure 1.

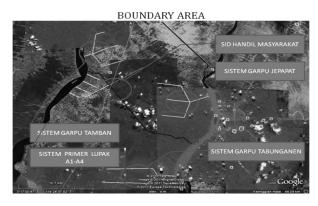


Fig. 1 Boundary Area of Field Study

Macro Water System

Handil Masyarakat Macro Water System which has 22 Handeels at the plan area is Anjir Tamban Primary Drainage System. Nevertheless, part of the drainage flow runs to neighbouring water system: to Lupak Primary Channel (A2 and A3) and Bukat Flow Water System.

On the stage of Anjir Tamban Primary Channel System, has experienced shallowness, primarily at the 1/5 from the mouth of Kapuas River (4/5 are empty into Barito River). The Major cause of the shallowness is dead flow zone, which has two river currents in the opposite direction. The total length of Anjir Tamban is approximately 25 kms.

The tidal movement predominantly in Anjir Tamban Ayunan is the inflow to the mouth of Barito River. The location of Public Handeel from the mouth of Kapuas River until the intersection of Anjir Tamban and Secondary Channel is about 5 Km, as can be seen in Figure 2.

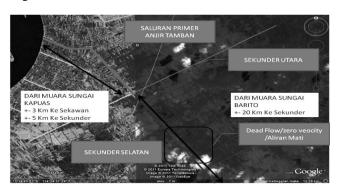


Fig. 2 Layout of Macro Water System

Micro Water System

Handeels at the plan location are in the stage of Meso/Micro Water System. The farmers' rice fields are usually water supplied from the handeels. Each of the paddy field has a tap channel directly into the handeel, and it is supplied at the right and the left of the handeel. Although the Handil Water System in Anjir Tamban ages more than 30 years, however, it has not shown the maturity stage and is not equipped with water control infrastructures. The solution of this peoblem is Controlled Water Management consists of some stages of design and plans. Solusi dari permasalahan ini adalah

Besides, the interval between two handeels is 200-300 in average, there are only two paddy fields between the two handeels which are only supplied by one handeel. In other words, the micro water systems are separated. Figure 3 shows the lay-out scheme of Meso/micro Water

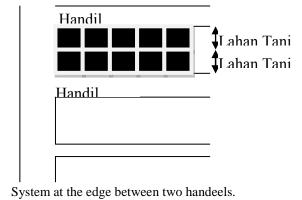


Figure 3: Meso / Micro Water System

Hydrotopography Analysis

The next two figures are the results of the hydrotopography analysis of the study area.

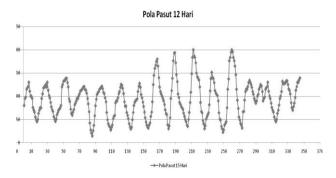


Fig. 4 Tidal Pattern from Field Study

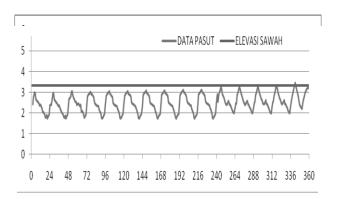


Fig. 5 Tidal Pattern from Field Study

From the overlay of the Tidal Data of some Handeel samples, it is known that based on the Class or the Land Type, the Handeels are in the Type A Class (\pm 4 times the land is influenced by the tidal, whether in the dry season or rainy season).

Hydrological Analysis

- a. Climatological Data from Sungai Tabuk station are used, while Precipitation Data came from 3 stations: Anjir Pasar, Tamban, dan SMPK Kapuas Murung Palingkau.
- b. Climatological data from Sungai Tabuk station consists of temperature, sunshine duration, wind speed, evaporation and relative humidity.
- c. The average precipitation in Kapuas Regency is 174,6 mm. The highest average is 314.6 mm in January and the lowest is 43.0 mm in August respectively.
- d. The Average Evapotranspiration (ET $_0$) is 6.217 mm/day. The highest ET $_0$ is 7.987 mm/day in August and the lowest is 5.285 mm/day in May respectively.

- e. In deciding whether precipitation data from 3 stations can be used or not, Homogeneity test (t-test) was used. Homogeneity test was done in order to know whether the series data which came from two gage stations were coming from the same population or not. Finally, 3 pairs of precipitation stations will be obtained.
- f. From t-test for precipitation data, for Anjir Pasar and Tamban Stations, t calculated = 1.0912 < t critic, where t kritis for two sides t-test distribution with $\alpha = 5\%$ and dk = 18, was given t kritis = 1.734.
- g. From t-test, for Anjir Pasar and SMPK Kapuas Murung Palingkau stations, t calculated = -0.3520 < t critic, where t kritis for two sides t-test distribution with $\alpha = 5\%$ and dk = 18, was given t kritis = 1.734.
- h. From t-test, for Tamban dan SMPK Kapuas Murung Palingkau stations, t calculated = -0.9633 < t critic, where t kritis for two sides t-test distribution with $\alpha = 5\%$ and dk = 18, was given t kritis = 1.734.
- Frequency Analysis was done in order to get design precivitation value with some of Probability Distribution as follows:
- 1. Gumbel Probability Distribution.
- 2. Normal Probability Distribution.
- 3. Log Normal Probability Distribution.
- 4. Log Pearson Type III Probability Distribution.

Based on all probability distributions, it can be summarized that all probability distributions can be accepted, however, Gumbel probability distribution is the best distribution to analyze precipitation data on the study area.

Kala Ulang T (tahun)	Reduce Variated (Yt)	Faktor Frekuensi (k)	Hujan Rancangan (X _T) mm
2	0.3665	-0.13550	95.017
5	1.4999	1.05796	114.451
10	2.2504	1.84813	127.318

Fig. 6 Gumbel Probability Results

Agriculture Soil Land Analysis

Agriculture Soil Survey is part of Public Handeel Survey, Investigation and Design for Kapuas Regency. This Survey is done to learn and to study about the potency and capability also land suitability in order to increase and develop farm enterprises for some selected commodity plants in the survey area. The outcomes of the survey were expected to give important suggestions that can be used for detail design of water system upgrading.

The method used in this survey referred to the technical guidance and relevant survey guidelines.

From the agriculture soil survey, it can be formulated the patterns of land use with always pay attention to the principle of land function conservation and regulations. This survey consists of some activities and methods as written below:

- Inventory of soil characteristics, soil type and soil spreading with secondary data collection and direct observation in the field.
- 2. Inventory and localize exiting soil problems such as pyrite, acid sulphate soil, acidity, peat land (thickness and maturity stage)
- 3. Soil samples removal for analyzing in the laboratorium in order to get the description about soil characteristics, by seeing the components whether they can fertile or poison the soil. Finally, it can be used for soil classification and fertile soil analysis.
- 4. Problems identification in the survey area for agricultural cultivation and the suggestions to face them
- 5. Table 2 presents the land suitability for plants as follows:

Table 2: Soil Properties

No	code	С	N	C/N	P ₂ O ₅ Bray I
		%			ppm
	0-30 cm	T	R	T	SR
·	30-60 cm	Т	R	T	SR
1	60-90 cm	ST	R	ST	SR
	90-120 cm	ST	R	T	SR
	0-30 cm	ST	R	T	SR
•	30-60 cm	ST	R	ST	SR
2	60-90 cm	ST	R	ST	SR
•	90-120 cm	ST	R	ST	SR
	0-30 cm	S	R	T	SR
•	30-60 cm	S	R	T	SR
3	60-90 cm	Т	SR	ST	SR
	90-120 cm	Т	SR	ST	SR
	0-30 cm	ST	R	ST	SR
4 -	30-60 cm	Т	SR	ST	SR
	60-90 cm	ST	R	ST	SR
	90-120 cm	ST	R	ST	SR

Continued, Table 2

No	KTK	K-dd	Mg-dd	Ca- dd	рН
-		me/1	00 gr		1-
	R	SR	R	R	SM
1 -	R	SR	S	SR	SM
1 -	S	SR	R	S	SM
	R	SR	R	R	SM
	R	SR	SR	SR	SM
2 -	R	SR	R	R	SM
2 -	R	SR	R	R	SM
_	S	SR	SR	R	SM
	R	SR	SR	R	SM
3 -	R	SR	SR	R	SM
э _	R	SR	R	R	SM
	R	SR	R	R	SM
	R	SR	R	R	SM
4 -	R	SR	R	R	SM
4 -	R	SR	R	R	SM
-	R	SR	R	R	SM

Land Suitability

Land suitability evaluation reffered to the Frame Work of Land Evaluation (FAO, 1976) with 4 categories: order, class, sub-class, and unit. In this work, the land suitability evaluation was done until only sub-class category which can be explained below:

Order	: Reflecting kinds of suitability which
01401	are divided into two orders:
Order S	: Suitable for long term and special use
Order N	: Not suitable for special use
	-
Classes	: Reflecting degrees of suitability, with
	five classes of suitability, as follows:
	Class S1 : Highly suitable
	Class S2 : Moderately suitable
	Class S3 : Marginally suitable
	Class N1 : Currently not suitable
	Class N2 : Permanently not
	suitable
Sub-	: Reflecting kinds of limitations. In
classes	each sub-class can have more than
	one limitation factor. Therefore, the
	dominant limitation factor has to be
	written in the front.

Land characteristics which will be used for land suitability evaluation are the average value that represents the land quality which is used by plant and crop for food. Some commodities that are going to evaluate for the suitability covers: rice, pineapple, banana, sweet potato, cassava, orange, peanut, pumpkin, chili, watermelon, tomato, eggplant and spinach. Land suitability Classes were determinate by using Technical Guidance for Land Evaluation of Agricultural Commodity from Soil Research Agency 2003.

Based on the test, it can be summarized that for each of rice field has the same land suitability for some plants and crops for food. Although according to land suitability analysis, the location in the study area are in class S3 (marginally suitable), however, they still can be managed by giving them organic and non-organic fertilizer and by selecting local variety that can face hard environment.

In particular, for Handil Indragiri, Handil Sumber Jaya and Handil Sekawan, not only the fertility problem but also the thickness of pyrite (FeS2) that can poison the plants. The making of drainage canals can cause the land dry faster so that it can accelerate pyrite oxidation process. Combination of water management by using water gate with lime addition can help in the farming development on the area with high pyrite content.

Based on the soil analysis on all SID rice field locations in Kapuas Regency, the results show low soil fertility. The major cause is relatively low base content, especially element of K, Mg and Ca. Low base content will tend to decrease the base saturation which is one of the variable that determines soil fertility status. The additional fertilizer which content element of K (KCl) and Ca/Mg (Dolomite) will increase the mineral for plants. Lime addition to the soil can increase the soil pH. Organic fertilizer which combines with microba such as bokashi is recommended since it is environmental friendly and support the government programme "Go Green".

Based on the soil analysis, it can be summarized as given below:.

- o From the Land Suitability Evaluation, in general, all location points are in Class S3 (marginally suitable), but they still can be managed not only by giving organic and non organic fertilizer but also by selecting local variety that can face the surrounding environment.
- o The agricultural land problems for 3 locations (handil

- indra giri, handil sumber jaya & handil sekawan) are:
- 1. Low soil fertility (relatively low base content)
- 2. The thickness of Pyrite that is less than 1 meter from soil surface.
- The solutions to answer the problems mentioned before are:
 - Combination of water management with controlled water gates and lime addition to decrease the pyrite content.
 - 2. Giving combination of organic fertilizer microorganisme since it is environmental friendly and supporting government programme.

REFERENCES

- Ankum, P., Koga, K., Segeren, W.A. and Luijendeijk, J.(1988). Lessons from 1200 years impoldering in the Netherlands. Proc. Int. Symposium on Shallow Sea and Lowland, Institute of Lowland Technology, Saga Univ. Saga: 102-108.
- Anonim (1976), A Frame Work for Land Evaluation, FAO Soils Bulletin 32.
- Loganatham, N., Balasubramaniam, A.S. and Bergado, D.T. (1993). Deformation analysis of embankments. J. Geotech. Engrg. ASCE. 199(8):1185-1206.
- Madhav, M.r. and Miura, N. (1994). Introduction. In: Miura, N., Madahav, M.R. and Koga, K.(Editors), Lowlands, Development and Management. A.A. Balkema, Netherlands and U.S.A.:31-37.
- Moustakas, N. (1990). Relationships of morphological and physicochemical properties of Vertisols under Greek climate conditions. Ph.D. Thesis, Agricultural Univ. Athens, Greek.
- Noor, M. (2004), Lahan Rawa: Sifat dan Pengelolaan Tanah Bermasalah Sulfat Masam, PT. RajaGrafindo Persada, Jakarta, Indonesia.
- Perkins, F.E. and Gunaratnam, D.J. (1970). Numerical Solution of Unsteady Flows in Open Channel. Hydrodynamic Laboratory, Report No.127, MIT, Cambridge, Massachusetts, U.S.A.
- Preissmann, A. (1961). Propagation des Intumescences dans les Canaux Etrivieres (Propagation of the Swellings in the Etrivieres Channels). First Congress of French Assoc. for Computation. Grenoble.