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Abstract

Highly efficient and selective hydrogenation of o,f-unsaturated carbonyl compounds to unsaturated alcohol using
bimetallic palladium-copper supported on carbon (denoted as Pd-Cu(3.0)/C; 3.0 is Pd/Cu molar ratio) catsast is
demonstrated. Pd-Cu(3.0)/C catalyst was prepared via a simple hydrothermal route under air atmosphere at 150
°C for 24 h followed by reduction with hydrogen at 400°C for 1.5 h. The chemoselective hydrogenation of typical
o, f-unsaturated carbonyl ketone (2-cyclohexene-1-one) and aldehyde (irans-2-hexenaldehyde), and chemoselective
hydrogenation of FFald and (E)-non-3-en-2-one mixture demonstrated high productivity, leading to high selectivity
of unsaturated alcohols. The presence of bimetallic Pd-Cu alloy phase with relatively high H: uptakes was ob-
served, eral'mg to preferentially hydrogenate C=0 rather than to C=C bonds under mild tion conditions. Pd-
Cu(3.0)/C catalyst was found to stable and reusable for at least four reaction runs and the activity and selectivity
of the catalyst can be restored to the original after rcjuvcnatisl with Hs at 400 °C for 1.5 h.
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1. Introduction hydes has been extensively studied because the
unsaturfEH alcohols that it forms are im-
portant in the production of a variety of fine
chemicals, such as pharmaceuticals, perfumes,
and flavorings [1,2]. Typically, the chemoselec-

The chemoselective hydrogenation of the
C=0 bond in o,f—unsaturated ketones / alde-

* Corresponding Author. tive reduction of the carbonyl group is achieved
Email: rodiansono@ulm.ac.id (R. Rodiansono); using reducing agents [3], Meerwin-Ponndorf-
Telp. /Fax.: +62 511 477 3112 Verly [4], or using organometallic catalysts [5].
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These processes often use costly chemicals and
solvents which require separations. In thififon-
text, heterogeneous catalysis is viewed as an
alternative, more sustainable route for the pro-

duction of these high-value chemicals at an in-

dustrial scale [6-8]. Simple preparation and re-
covery of heterogeneous catalysts are desirable
features for the chemical industry.

Recent works indicate that bimetallic cata-
lysts have the potential to enhance the selectiv-
ity in the hydrogenation of many different clas-
ses of chemicals [9], such as: alkynes, alkenes
[10], and carbonyl compounds [11,12] as well as
biomass-derived molecules [13-15]. It is well
known that the group 9 and 10 metals, such as
, Ir, Ni, Pd, and Pt, generally hydrogenate
the C=C bond more easily than the C=0 bond
of w,f-unsaturated EEehydes [16]. To improve
the chemoselective hydrogenation of the C=0
group, the modification of the Ebve mentioned
metals is necessary, i.e., the addition of more
electropositive metals [17] or the use of oxide
supports that strongly interact with the active
metals [18]. In these contexts, we have de-
seribed previously that the chemoselective be-
haviors of Ni-based catalysts can be controlled
by doping the second metals, such as tin (Sn) or
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indium (In) to form bimetallic Ni-Sn or Ni-In
alloy. Both bulk and supported Ni—-Sn and
Ni-In alloy catalyst have obviously demon-
strated high chemoselectivity in the hydro-
genation of o,f-unsaturated ketones/aldehydes
toward unsaturated alcohols [19-23].

It is well-known that furfural (FFald), a ver-
satile and biogenic biomass-derived compound,
which can be obtained from acidic dehydration
of arabinose or xylose of hemicellulosic bio-
masses [24]. Further catalytic conversion of
FFald via chemoselective hydrogenation, hy-
drogenolysis, hydrogenation-arrangement us-
ing both monometallic and Hifletallic transi-
tion metal catalysts produced a variety of high
value chemicals such as furfuryl alcohol
(FFalc), tetrahydrofurfuryl alecohol (THFalc),
methyl-furan (MeF), methyl tetrahydrofuran
(MeTHF), pentanediol (PeD), and cyclopenta-
none (CPO) or cyclopentanol (CPOL) as shown
in Scheme 1 [25-27].

Platinum-group metal (PGM) constitute the
most studied catalyst components for hydro-
genation of FFald and demonstrated high ac-
tivity and selectivity towards FFale, which
were included Sn modified Pt-based [28] and
Ni-based catalysts [20,21] due to their intrinsic
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Scheme 1. Conceivable reaction networks for the catalytic transformation of FFald that involve hydro-

genation, hydrogenolysis, decarbonylation,
rearrangement pathways.

ring opening hydrogenation, and hydrogenation-
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high catalytic ability under mild conditions,
high selectivity towards a specific product, high
stability under various reaction conditions, and
tolerance to poisons [29,30]. Although platinum
is the most widely used element in catalysis,
palladium is receiving increasing attention ow-
ing to its similar catalytic properties to plati-
num and wider availability. However, the cata-
lytic behavior of Pd-based catalyst on the hy-
drogenation of unsaturated aldehydes/ketones
or oxygenated biomass-derived compounds that
consisted of C=0 and C=C bonds preferentially
promoted decarbonylation or decarbof§lation
reactions. For example, when Pd/C is used as
catalyst for hydrogenation of FFald in the pres-
ence of H: gas, a wide range of competing reac-
tions, such as unselective hydrogenation of fu-
ran-ring or aldehyde groups and incomplete hy-
drodeoxygenation have been reported [31,32].
Therefore, introduction of a secondary metal
species or deposition of Pd nanoparticles on the
support tilt strongly interact with the actives
metal are frequently adopted as an effective ap-
proach to acquire target products in satisfacto-
ry yields [30].

In the present report, we have extended our
study on the preparation of bimetallic palladi-
um copper catalyst supported on active carbon
(denoted as Pd—Cu(3.0)/C; 3.0 is molar ratio of
Pd/Cu). Bimetallic Pd—Cu(3.0)/C catalyst was
prepared via the hydrothermal treatment off
solution that contained Pd and Cu species at
150 °C for 24 h followed by Hz treatment at 400
°C for 1.5 h. The promotion effect of Cu on Pd/C
catalyst, solvent use[Blld reaction parameters
(initial H2 pressure, reaction temperature) on
the activity and selectivity in the hydrogena-
tion of unsaturated carbonyl compounds are al-
so studied.

2. Materials and Methods
2.1 Materials

Palladium(II) chloride (P(m; Tokyo Chemi-
cal Industries Co. (TCI)), copper(Il) nitrate
(Cu(NO3)z 3H:0; Merck) were purchased and
used as recef@H. Microporous carbon (C, Sper =
815 m2.g1) was purchased from WAKO Pure
Chemical Industries, Ltd. unless otherwise
stated. Furfural, furfuryl alcohol, tetrahydro-
furfuryl alcohol, iso-propanol, ethanol, and au-
thentic organic reactants and products were
purchaffll from Tokyo Chemical Industries Co.
(TCI). All organic chemical compounds were
purified using standard procedures prior to
use.

2.2 Catalyst Chaﬂcterization

All catalysts were characterized by powder
X-ray diffraction (XRD) Miniflex 600 Rigaku
with Cu as monochromatic source K a radia-
tion (A = 0.15444 nm). XRD operated at 40 kV
and 15 mA with solar slit 1.25°, scffifstep 5°
min-! and using a Ni Kf filter. The crystallite
size of palladium was estimated by using the
Scherrer's equation.

The Brunauer-Emmet-Teller (BET) surface
area (Seer) and pore volume m)) were meas-
ured using N2 physisorption at —196 °C on a
Belsorp Max (BEL Japan). The samples were
degassed at 200 °C for 2 h to remove [lly-
sisorbed gases prior to the measurement. The
amount of nitrogen adsorbed onto the samples
wasf@sed to calculate the BET surface area via
the BET equation. The pore volume was esti-
mated to be the liquid volume of nitrogen at a
relative pressure of approximately 0.995 ac-
cording to the Barrett—Joyner—Halenda (BJH)
approach based on desorption data [33], while
the micropore distribution was estimated by
using Horvarth- Kawazoe (HK) approach [34].

The active surface areas were determ{ffid
by Hz chemisorption. After the catalyst was
E&B:ted at 120 °C under vacuum for 30 min, it
was heated at °C under H: for 30 min and
under vacuum for 30 min, followed by evacua-
tion to room temperature for 30 min. The ad-
sorption of Hz was conducted at 0 °C. The ac-
tive surface area was calculated from the vol-
ume of Hz desorbed by assuming an H/Pd stoi-
chiometry of one, respectively and the number
of Pd atom for the (111) plane is 1.5x10% per
cm? Pd based on an equal distribution of the
three lowest index planes of Pd [35].

2.3 Preparation of Pd-Cu(3.0)/C Catalysts

A typical procedure of the synthesis of bime-
tallic palladium-copper supported on carbon
(denoted as Pd-Cu(3.0)/C (Pd = 5wt%: 3.0 mo-
lar ratio of Pd/Cu)) catalyst is described as fol-
lows [20]: PdCl12(0.472 mmol) was dissolved in
deionized water (denoted as solution A), and
Cu(NO;z)2-3H20 (0.156 mmol) was dissolved in
ethanol/2-methoxy ethanol (2:1) (denoted as so-
lution B) at room temperature. Solutions A and
B were mixed at room temperature and a 1.0 g
carbon (C, Seer = 815 m2.g-1) was suhmuently
added; the temperature was raised to °C
and the mixture was stirred for 12 h. The pH of
the mixture was adjusted to 12 through the
dropwise addition of an aqueous solution of
NaOH (3.1 M). The mixture was then placed
into a sealed-Teflon autoclave for the hydro-
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thermal reaction at 150 °C for 24 h. The result-
ing black precipitate was filtered, washed with
EEBtilled water, and then dried under vacuum
overnight. Prior to the catalytic reaction, the
obtained black powf} was reduced with hydro-
gen at 400 °C for 1.5 h.

2.4 Catalytic Reactions
2.4.1 Hydrogenation of FFald

Pd-Cu(3.0)/C_catalyst (0.05 g), FFald (1.1
mmol), trans-decahydronaphthalene (decalin)
(0.2 mmol), and iso-PrOH (3 mL) as solvent
were placed into a glass reaction tube, which
fitted inside a stainless-steel reactor. After H:
was introduced {lo the reactor with an initial
H: pressure of 3.0 MPa at room temperature,
the temperature of the reactor was increased to
130 °C. After 1.5 h (90 min), conversion of
FFald and the yield of FFalc were determined
by GC analysis using an internal standard
technique. The Pd—Cu(3.0)/C catalyst was easily
EBbarated using either simple centrifugation or
filtration. The solvent was removed in vacuo,
and the residue was purified via silica-gel col-
umn chromatography.

2.4.2 Product Analysis

GC analysis of the react (FFald) and
products (FFale and THFale) was performed on
a Shimadzu GC-8A equipped with a flame ioni-
EElion detector and silicone OV-101 packing.
Gas chromatography-mass spectrometry (GC-
) was performed on a Shimadzu GC-17B
equipped with a thermal conductivity dEctor
and an RT-PDEXsm capillary column. 'H and
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13C NMR spectra were obtained on a JNM-
ALA400 spectromeff} at 400 MHz; the samples
for NMR analysis were dissolved in chlorofdfia-
di1 with TMS as the internal standard. The
products were confirmed by a comparison of
their GC retention time, mass, 'H and 13C
NMR spectra with those of authentic samples,
The conversion, yield and selectivity of the
products were calculated according to the fol-
lowing equations:

Fy — F,

Conversion = M x 100% &Y
o

/] duct

Yield — TCLPTOGUCE 009 (2)
Selectivity = — 2P 1000

erectivity = total mol product ° 3
where Fy is the introduced mol reactant

(furfural, FFald), F: is the remaining mol reac-
tant, and AF is the consumed mol reactant
(introduced mol reactant- remained mol reac-
tant), which are all obtained from GC analysis
using an internal standard technique.

3. Results and Discussion
3.1 Catalyst Characterization

The Nj-adsorption/desorption of charcoal (C)
support and the synthesized bimetallic Pd-
Cu/C was performed and the profiles are shown
in Figure 1. The hysteresis loop of adsorption /
desorption of the synthesized Pd-Cu/C samples
show a very similar to that of former charcoal
support, suggesting that there is no significant

400 F
— Pd-Cu(3.0)/C red (b) ¥C
—ao— Pd-Cu(3.0)/C rec o
300
200 + e {:?:( » o
100
og , : , . .
0.0 0.2 0.4 0.6 0.8 1.0
p/p°

Figure 1. Nz-adsorption/desorptflE} profiles of (a) charcoal (C) and (b) the synthesized Pd-Cu/C catalyst
before and after reduction with Hz at 400 °C for 1.5 h and recovered sample.
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change of the pore structure of catalyst support
during the introducing Pd metal or thermal ac-
tivation using N: or Hz at 400 °C. It has been
reported that carbon support has high thermal
and chemical stability at the range of 300-500
°C@der H: or Nz atmosphere [36,37].

To determine the pore size distribution of C
support and the synthesized catalysts, the plot
of volume of adsorbed-N: versus pore distribu-
tion using Horvarth-Kawazoe (HK) approach
were performed as shown in Figure 2. As ex-
pected, the charcoal (C) support shows the mi-
crostructure of carbon with narrow pore size
distribution of 0.59-0.66 nm (Figure 2a). After
introduction of Pd-Cu, the shift of pore size dis-
tribution at =0.66 nm for after and before re-
duction and recovered samples are clearly ob-
served. However, there is no clear evidence for
the shift of pore size distribution towards small
pore sizes or big pore sizes after introducing
the Pd-Cu species or thermal activation using
Nz or Hz at 400 °C.

The physico-chemical properties (e.g. specif-
ic surface area BET (Serr), pore volume, pore

diameter, and Hs uptakes) of the synthesized
bimetallic Pd-Cu(3.0)/C catalysts are summa-
rized in Table 1.

The Sper of as prepared, Ha-reduced, and re-
covered Pd-Cu(3.0)/C was 637, 712, and 601
m2.g-1, respectively, which are lower than that
of the Sger of the carbon support (C, Sser = 815
m?.g7!). The incorporation of metal species into
pore structure of carbon will significantly re-
duce the specific surface area (Sger) due the
pore blocking or collapsed the structure by
chemical or thermal treatment during the cata-
lyst preparation [38]. The decrease in Sger is
consistent with the shift of pore size distribu-
tion as has fdh mentioned above.

Figure 3 shows the XRD pattern of commer-
cial Pd/C(5%wt), as-prepared and pre-reduced
bimetallic Pd-Cu(3.0)/C catalysts. In the case of
as-prepared Pd-Cu(3.0)/C catalyst, the typical
diffraction peaks at 20 = 39.96°, 46.16°, 67.6°
were clearly observed, wigh can be attributed
to the metallic species of Pd(111), Pd(200), and
Pd(020) (JCPDEED5-0681), respectively [39].
The diffraction peak of Pd(111) at 20 = 40.8°

4 1.50
dp = 0.59 nm (a) dp =0.66 nm (b)
1.25} !
3| -
—_ __Loof
) g
—-'g__ 2t 3& 0.75t
=
= dp = 0.66 nm =>
4, Charceal (C) © 0.50+
1 L
0.25}
e 0.00 b—
0.50 0.75 1.00 1.25 1.50 1.75 0.50
dp/nm dp (nm)

Figure 2. Pore distribution of (a) charcoal (C) and the synthesized bimetallic Pd—Cu(3.0)/C catalysts using
HK approach.

Table 1. Physico-chemical properties of bimetallic Pd-Cu(3.0)/C catalyst.

Entry Catalysts Seer? Pore Vol.b Pore Diametert (nm) Hz uptakes”
(m2.g1) (m?.g) BJH® HK¢ (mmol.g™1)
1 Charcoal (C) 815 1.762 1.22 0.59 nd
2e Pd-Cu(3.0)/C unred. 637 0.494 3.10 0.61 38.4
3 Pd-Cu(3.0)/C red. 712 0.548 3.08 0.65 39.6
ar Pd-Cu(3.0)/C recovered 601 0.428 2.85 0.71 27.8

«The value in the parenthesis is Pd/Cu molar ratio. *Sger was determined by N2 adsorption at -196 °C (77 K), pore volume and
pore diameter were calculated according to BJH approach. <Pore diameter was calculated using HK method. 4Based upon total
the H: uptake at 0 °C (after corrections for physical and chemical adsorption). “The as prepared Pd-Cu(3.0)/C without pre re-
duced with Hz. /The recovered Pd-Cu(3.0)/C after the third reaction run.
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become broadened, which can be attributed as
the formation of bimetallic Pd-Cu alloy after re-
duction with Hz at 400 °C for 90 min [40]. By
using the Scherrer’s equation, the average
crystallite sizes of Pd(111) in as prepared Pd-
Cu(3.0)/C were 4.2 nm, whereas iffJPd-
Cu(3.0)/C was unable to calculate due to the
overlapping diffraction peaks of Pd(111) and
Pd-Cu alloy phase (Figure 3c). A small peak at
20 = 29.6° which can be assigned as the
Cu20(110) species (JCPDS# 78-2076) was also
observed both in the as prepared and reduced
Pd-Cu(3.0)/C samples (Figure 3b-c). Additional-
ly, the broadened peak at 20 = 21.3° can be at-

|1500 cps
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Figure 3. XRD patterns of (a) commercial Pd/C
(5%wt Pd), (b) as prepared Pd-Cu(3.0)/C and (c)
after reduction with Hz at 400 °C for 1.5 h.

40

tributed to the diffraction peaks of C(111) of
carbon support [41].

3.2 Catalytic Reactions
3.2.1 Screening of second metal

In the first set experiments, the catalytic
hydrogenation of biomass-derived FFald using
various bimetallic Pd-based catalysts were per-
formed and the results are summarized in Ta-
ble 2. By using commercial Pd/C (5%wt Pd) cat-
alyst, the main product was THFEE] (90%) as
the result of total hydrogenation of both C=C
and C=0 bonds in FFald with small amount
yields of FFale (2%) and 2-MeF (8%) at 100%
conversion of FFald (entry 1). Using Pd-
Cu(3.00/C catalyst without pre-reduction with
Hs, the conversion of FFald was only 56% and
yielded 28% FFale, 15% THFale, and 13% oth-
ers (others consist of furfural condensation ac-
cording to GC and GC-MS data) (entry 2) [42].
After a small amount of Cu (0.156 mmol;
Pd/Cu molar ratio = 3.0) was introduced and
Pd-Cu(3.0)/C catalyst was pre-reduced with H,
at 400 °C, the product selectivity remarkably
shifted to FFalc (68% in vfER) at 73% conver-
sion of FFald (entry 3). An increase in the reac-
tion temperature from 100 °C to 130 °C gave a
remarkable increase in FFalc yield from 68% to
94%, respectively (entries 3 and 4). After reac-
tion time was extended to 3 h, the yield of
FFalc slightly decreased to 92% while THFalc
and 2-MeF yield remained unchanged at >99%
conversion of FFald (entry 5). This result sug-
gests that further hydrogenation of C=C furan
ring was significantly inhibited over bimetallic

Table 2. Results of selective hydrogenation of FFald using various bimetallic Pd-based catalysts.

Composition .
Entry Catalysts (mrr];\olg‘l) T(Ec%;l C?o;l;ﬁ Yield® (%)
-8 Pd M ’ FFale THFale 2-MeF Others
1 Pd/Ce 0.50 - 100 100 2 90 8 0
2 PA@B.0)/Cunred. 0.472 0.156 100 56 28 15 0 13
3 Pd-Cu(3.0)/C 0.472 0.156 100 73 68 3 2 0
4 Pd-Cu(3.0)/C 0.472 0156 130  >99 94 5 1 0
5¢ Pd-Cu(3.0)/C 0.472 0156 130  >99 92 6 3 0
6 Pd-Sn(3.0)/C 0.461 0.152 130 53 16 5 2 20
7 Pd-Co(3.0)/C 0.464 0.151 130 13 12 15 6 10
8 Pd-Ni(3.0)/C 0.481 0.161 130 13 6 6 1 0
9 Pd-Fe(3.0)/C 0.560 0.187 130 8 43 25 5 15

«The value in the parenthesis is Pd'M molar ratio (M = Cu, Sn, Co and Fe); the
OES. Reaction conditions: catalyst (5 mg); FFald (2 mmol); solvent (2-propanol, 5 mLj

lk composition was determined by ICP-
mperature (130 °C); initial H: pressure

(3.0 MPa); reaction time (1.5 h). *Conversion and yields of FFale THFale, and 2-MeF were determined by GC using an internal
standard technigue. Others consist of condensation product of FFald or FFale according to GC/GC-MS data. <Commercially

available Pd/C (5%wt Pd). “The reaction time was 3 h.
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Pd-Cu(3.0)/C[@talyst. Sitthisa et al. [32] have
noticed that the presence of Cu in Pd-Cuw/SiO:
catalyst to form Pd-Cu alloy phase greatly en-
hanced the affinity of Pd towards n2(C-0)-
furfural interaction, facilitated the formation of
hydroxyallyl species then easily hydrogenated
to FFalc. On the other hand, the further hydro-
genation of C=C or decarbonylation rate is
greatly reduced on bimetallic Pd-Cu system
[32]. Furthermore, investigation of the effect of
various second metals, such as: tin (Sn), cobalt
(Co), nickel (Ni), and iron (Fe), on the conver-
sion of [{Bald and yield of FFalc was also per-
formed and the results are also summarized in
Table 2. Those Pd-M/C (M = Sn, Co, Ni, and Fe)
catalysts were synthesized using a similar pro-
cedure to that of Pd-Cu(3.0)/C catalyst. Howev-
er, those bimetallic Pd-M/C (M = Sn, Co, Ni,
and Fe) catalysts gave unsatisfied results both
conversion of FFald and yield of FFale under
the same reaction conditions (entries 6-9).
Therefore, the catalytic reaction of FFald in the
presence of bimetallic Pd-Cu(3.0)/C catalyst
will be furtherly investigated, including the ef-
fect of solvent used, reaction temperature, ini-
tial Hz pressure, time profiles, and reusability
test.

3.2.2 Effect of Solvent

The solvent screening for FFald hydrogena-
tion using Pd-(J#.0)/C catalyst on the conver-
sion and yield was performed and the results
are summarized in Table 3. Alcohols, such as:
2-propanol (iso-PrOH), 1-propanol, ethanol, and
methanol, and 1,4-dioxane (typical cyclic ether)
are superior to other solvents, giving quantita-

tively high yields of FFalc (entries 1-5). On the
other hand, FFald hydrogenation did not pro-
ceed effectively in toluene, giving only a 43%
alc yield at the same conditions (entry 6).
These results are very good agreement with
the catalytic reaction results over bimetallic
Ni-Sn alloy catalysts as reported previously
[19,21]. The formation of 1,2- 1,5-, and 1,4-
pentanediol as the hydrogenolyzed products or
condensation product was firstly observed in
H:0 solvent, therefore we furtherly evaluated
the catalytic reaction both in H20 solvent only
and alcohols/1,4-dioxane-H:0 mixture sol-
vent and the results are also summarized in
Table 3. In ethanol : H:0 (1.5:2.0 vi), 2-
propanol:H:0 (1.5:2.0 v/v), and 1,4-dioxane :
H:0 (1.5 : 2.0ffdv) mixture solvents, the reac-
tion not only hydrogenation of C=0 and C=C
bonds of reactant but also hydrogenolysis of fu-
ran ring, giving significantly high yield of pen-
tanediol (entries 8-10). These results are in ac-
cordance with our results in the hydrogenolysis
of FFald to 1,4-pentanediol in ethanol:H.O
(1.5:2.0 v/v) mixture solvent using bulk Ni-Sn
alloy catalyst as reported previously [43]. Addi-
tionally, a notable high yield of eyclopentanone
(CPO) and cyclopentanol (CPOL) was obtained
when 1,4-dioxane or 1,4-dioxane-Hz20 mixture
solvent was used. These results are very con-
sistent with the previous work of Dewi Astuti
et al. [27] using bimetallic Ni-Fe(3.0)/Ti0: cata-
lysts under the identical reaction conditions.
Therefore, further investigation on the hydro-
genolysis of FFald using bimetallic Pd-based
catalysts will be reported in our upcoming
manuscript.

Table 3. Results of solvent screening for FFald hydrogenation over Pd-Cu(3.0)/C catalyst.

B Sl Conv.e Yield= (%)

’Er olvent FFale THFale 2MeF  Others’
1 1-Propanol =99 90 8 2 0
2 2-Propanol >99 94 5 1 0
3 Ethanol 96 94 2 0 0
4 Methanol 90 80 i 3 0
5 1,4-Dioxane 67 94 3 0 27«
6 Toluene 56 43 13 0 0
7 H=0 67 27 13 7 20
8 Ethanol: H20 (1.5: 2.0 v/v) 98 53 18 5 32+
9 2-Propanol/Hz=0 (1.5: 2.0 v/v) 99 57 15 5 22
10 1,4-Dioxane/H20 (1.5: 2.0 v/v) 99 38 15 2 44c

Reaction conditions: catalyst (5 mg); FFald (2 mmol); sglyent (3.5 mL); Bnperature (130 °C); initial H: pressure (3.0 MPa); reac-
tion time (1.5 h). «Conversion and yields of FFale TH and 2-MeF were determined by GC using an internal standard tech-
nigque. #0thers consist of the hydrogenolysis products such as 1,2-pentanediol, 1,5-pentanediol, and 1.4-pentanediol. “<T'he main
product of others using 1,4-dioxane solvent was cyclopentanone (CPO) and cyclopentanol (CPOL).
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3.2.3 Effect of reaction temperature

The effect of temperature on the catalytic
hydrogenation of FFald to FFalc was evaluated
over Pd-Cu(3.0)/C catalyst at range temp§l-
ture of 90-190 °C in batch system for 1.5 h and
the results are shown in Figure 4.

Differences in the conversion of FFald and
product distributions at different temperature
are clearly observed. At lower temperature (90-
110 °C), the maximum conversion of FFald was
around 87% with selectivity of FFalc was near-
ly 100%. An increase of the reaction tempera-

100

80
g
E 60} —}-Conversion
; —@-Fralc
p -/ THFalc
g a0l -l 2-MeF
@
>
£
S

20+

100 120 140 160 180 200

Reaction temperature (°C)
Y

Figure 4. Effect of reaction temperature on the
FFald conversion and product distribution over
bimetallic Pd-Cu(3.0)/C catalyst. Reaction con-
ditions: catalyst, 0.05 g; FFald, 1.1 mmol; iso-
PrOH, 3 mL; Hz, 3.0 MPa, 1.5 h.

100 +
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8
=]
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Figure 5. Effect of the initial H> pressure on
the FFald conversion over bimetallic Pd-
Cu(3.0)/C catalyst. Reaction conditions: cata-
lyst, 0.05 g; FFald, 1.1 mmol; iso-PrOH, 3 mL;
130°C, 1.5 h.

ture from 100 °C to 130 °C gave a notable in-
crease in FFalc yield from 68% to 94%, respec-
tively followed by a slight increase of THFalc
from 3% to 5%. At those of reaction tempera-
tures, the enhancement of decarbonylation re-
action rate of FFald did not occur as indicated
by remained unchanged of 2-MeF yield. Moreo-
ver, further increase @lleaction temperature to
150-190 °C promoted the hydrogenation of C=C
bond as well as the decarbonylation reactions,
giving increase in yields of THFalc and 2-MeF,
respectively. It has been reported that the de-
carbonylation reaction of FFald corresponding
to 2-MeF using catalyst of platinum metal
groups (Pd, Pt, and Ir) is favourably occurred
at relatively high reaction temperature (190-
220 °C) [44] or vapor phase hydrogenation [31].
The presence of second metals, such as: Cu or
Fe, was significantly inhibited the further reac-
tion of FIERd or FFalc, such as: total hydro-
genation of C=C/C=0 bonds or decarbonyla-
tion/decarboxylation, therefore the selectivity
of desired product FFale maintained along with
the wide range reaction conditions [32].

26

3.2.4 Effect of initial H, pressure

The effect of th@hitial H: pressure on the
FFald conversion and product selectivity as
shown in Figure 5. The FFald conversion and
FFalc selectivity gradually increased as the ini-
tial Ho press@) increased, whereas the THFalc
increased at initial Hz pressure of 0.5-1.§ZPa
and remained unchanged at the higher initial
H: pressure. On the other hand, yield of 2-MeF

100

80}
&
E 60 —D—Conversion
> @ Fralc
e THFzlc
o 40} 2-MeF
w
o
>
c
S 20}

0

0.0 15 3.0 45 6.0
Reaction time (h)

Figure 6. Time profiles of the hydrogenation of
FFald over bimetallic Pd-Cu(3.0)/C catalyst.
Reaction conditions: catalyst, 0.05 g; FFald, 1.1
mmol; iso-PrOH, 3 mL; 130 °C.
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decreased to 0% at initial pressure between 2.5
MPa and 3.0 MPa.

3.3 Time Profiles

The reaction profiles of FFald hydrogenation
at 130 °C on the bimetallic Pd-Cu(3.0)/C cata-
lyst are shown in Figure 6. At the early reac-
tion time (0.5 h), FFald conversion was 42% to
produce 100% FFalc selectivity, indicating that
C=0 hydrogenation was took place easily using
bimetallic Pd-Cu(3.0)/C catalyst. After reaction
was prolonged to 1.0 h, a notable increase of
FFald was obtained (87%) with yields of FF§E})
and THFale were 85% and 2%, respectively. It
has been reported that Pd exhibits a low rate
for hydrogenation of the C=0 bond compared
with other metals commonly used for hydro-
genation [45]. Our current results show that a
great enhancement both conversion of FFald
and selectivity of FFale which can be attributed

to the promotional effect of the second metal
Cu as has already described in previous reports
[31,32]. The maxif§@h yield of FFale (94%)
was achieved after a reaction time of 1.5 h at
full conversion of FFald. When the reaction
time was extended to 3-6 h, further hydrogena-
tion reaction of C=C bond obviously occurred as
indicated by the increase of THFale yield. On
the other hand, tB) yield of 2-MeF was almost
unchanged after a reaction time of 6 h (3%),
suggesting the decarbonylation of FFald or
FFalc did not occur effectively using bimetallic
Pd-Cu(3.0)/C catalyst under the current operat-
ing conditions as mentioned previously.

3.4 Hydrogenation of o,-Unsaturated Ketone
and Aldehyde

A substrate scope of the presence of Pd-
Cu(3.0)/C catalyst in the hydrogenation of a,f3-
unsaturated ketone and aldehyde was exam-

Table 4. Results of selective hydrogenation of typical a,p-unsaturated ketone using Pd-Cu(3.0)/C cata-

lyst.
O Pd-Cu (3.0)/C OH o OH
+ +
g 3.0 MPa of Hy, Q/ U O/
iso-PrOH 1a 2a 3a
Ent Catalvate Reaction temp.  Reaction time Conv.b (%) Selectivity® (%)
~ y °C) (h) ! la  2a 3a
1 aﬂ/C (h%wt) 130 1.5 33 0 24 76
2 Pd-Cu(3.0)/C 100 1.5 54 96 0 4
3 Pd-Cu(3.0)/C 130 1.5 94 90 0 10
4 Pd-Cu(3.0)/C 130 3.0 >99 68 0 32

Reaction conditions: catalyst, 0.05 g; substrate!i mmol; iso-PrOH, 3 mL. «The value in the parenthesis is Pd/Cu molar ratio,

determined by ICP-OES. #Conversion and yield

e determined by GC using an internal standard technique.

Table 5. Results of selective hydrogenation of typical o,p-unsaturated aldehyde using Pd-Cu(3.0)/C

catalyst
Pd-Cu (3.0)/C
\/\NO MOH + \/\\/\/OH
3.0 MPa of Ha,
iso-PrOH 1b 2b
Entr Catalvsts Reaction temp. Reaction time Conv.t (%) Selectivity® (%)
’ Y 0 (h) ‘ 1a 2a
1 ﬂi/C (5 %wt) 130 1.5 65 0 100
Pd-Cu(3.0)/C 100 1.5 87 96 4
3 Pd-Cu(3.0)/C 130 1.5 90 90 10
4 Pd-Cu(3.0)/C 130 3.0 >99 83 17

Reaction conditions: catalyst, 0.05 g; substratel mmol; iso-PrOH, 3 mL. «The value in the parenthesis is Pd/Cu molar ratio,
determined by ICP-OES. *Conversion and yield were determined by GC using an internal standard technique
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56

ined and the gu]ts are summarized in Table 4
and Table 5. In the case of hydrogenation of ke-
tone, 2-cyclohexene-1-one was selected as a typ-
ical o,ff-unsaturated ketone substrate. Using a
commercial Pd/C (5%wt Pd) catalyst, 33% con-
version of 2-cyclohexene-l-one was obtained
with the selectivities of product 2a and 3a were
24% and 76%, respectively without the for-
mation of product la (entry 1). A remarkably
high selectivity of product la (96%) was ob-
tained over Pd-Cu(3.0)/C catalyst at tempera-
ture of 100 °C for 1.5 h at 54% conversion
(entry 2). This is a result of promoting effect of
on Pd/C, leading to high affinity toward
C=0 b@ rather than C=C bond of the sub-
strate. An inerease reaction temperature from
100 °C to 130 °C not only enhanced the conver-
sion to 94% but also caused further hydrogena-
tion C=C bond, therefore the selectivity to 3a
increased significantly (entry 3). Moreover, the
extent of reaction time to 3.0 h gave a complet-
ed reaction (>99% conversion) with product se-
lectivities of la and 3a were 68% and 32%, re-
spectively (entry 4).

Next, we examined the catalytic reaction of
typical «,p-unsaturated aldehyde (trans-2-
hexenalyde) using bimetallic Pd-Cu(3.0)/C
catalyst and the results are summarized in Ta-

ble 5. Using Pd/C catalyst at 130 °C and 1.5 h,
65% conversion of trans-2-hexenaldehyde was
achieved and yielded 100fselectivity of n-
hexanol (1b), which means both C=C and C=0
bonds of @hctant were simultaneously hydro-
genated under the reaction conditions (entry
1). Interestingly, bimetallic Pd-Cu(3.0)/C cata-
lyst gave a remarkable selectivity to 2-
henxene-ol (1a) (96%) eﬂ?% conversion at 100
°C for 1.5 h (entry 2). When the reactfejl tem-
perature was increased to 130 °C or reaction
time was extended to 3 h, the selectivity of sat-
urated alcohol significantly increased indicat-
ing the further hydrogenation of C=C was obvi-
ously occurred (entries 3 and 4).

3.5 Chemoselective Hydrogenation of Reactant
Mixtures

T§bmplete our investigation in the selec-
tive hydrogenation of C=0 bond rather than
C=C bond, the catalytic reaction of a mixture of
FFald (typical unsaturated aldehyde) and (E)-
non-3-en-2-one (typical unsaturated ketone)
(molar ratio to 1.0) was examined using bime-
tallic Pd-Cu(3.0)/C catalysts and the results
showed in Scheme 2. Under the current operat-
ing conditions, at a full conversion of FFald

Chemoselective hydrogenation of reactant mixtures

| > [0)_\ Conv. >99%
7\ Pd-Cu(3.0) catal. Y OH Yield 95%
=
2mmol Ha, i-PrOH, 130°C 1c o
O 15h /\/\/\)\ Conv. 91%
/\/\/\)j\ A Yield 66%
2 mmol 2c

Scheme 2. Chemoselective hydrogenation of aldehyde (FFald) and ketone ((E)-non-3-en-2-one) reactant
mixtures. Reaction conditions: catalyst, 0.05 g; substrate, 2.0 mmol; iso-PrOH, 3.5 mL, 3.0 MPa H», 130
°C,1.5h.

Table 6. Results of the selective hydrogenation of FFald to FFale over bimetallic Pd-Cu(3.0)/C catalyst
after four consecutive reaction runs.

. . Yields (%)
Entry Reaction run- Conversion= (%)
FFale THFale 2-MeF
1 1st >99 94 5 1
2 2nd 82 76 5 1
3 3rd 73 66 6 1
b 4th >99 95 4 @ 1

Reaction conditions: catalyst (0.05 g); EFald (1.1 mmol); solvent (iso-PrOH, 3.5 ra temperature (130 °C); initial H: pressure (3.0
MPay); reaction time (1.5 h). «Conversi d yields of FFale THFale, and 2-MeF were determined by GC using an internal stand-
ard technique. #I'he used Pd-Cu(3.0)/C catalyst was reduced with Hz at 400 °C for 1.5 h before reaction.
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with 95% yield of FFale (1e) was obtained. On
the other hand, the conversion of (E)-non-3-en-
2-one was 91% with moderate yield of unsatu-
rated alcohol (2¢) (66%). These FZBults suggest
that the bimetallic Pd-Cu(3.0)/C catalyst can be
applied for selective hydrogenation of a,p-
unsaturated ketone and aldehyde to corre-
sponding unsaturated alcohol from moderate to
high yield.

3.6 Reusability Test

A reusability test was performed on the Pd-
Cu(3.0)/C cat{8Bt in the selective hydrogena-
tion of FFald and the results are Eflmmarized
in Table 6. The used Pd-Cu(3.0)/C catalyst was
easily separated by either simpldEintrifugation
or filtration after the reaction. The activity of
the catalyst decreased while the selectivity was
maintaine@br at least four consecutive reac-
tion runs. The catalytic activity and selectivity
of the used Pd-Cu(3.0)/C catalyst can be re-
stored to the original by simple reduction with
Hs at 400 °C for 1.5 h.

4. Conclusions

We have described the promotional effect of
second metal Cu on Pd/C catalyst in the
chemoselective hydrogenation of biobased fur-
furaldehyde (FFald) and typical «,f-
unsaturated ketones/aldehydes. The presence
of Cu (0.012 mmol) in Pd/C to form bimetallic
Pd-Cu alloy phases obvifllsly enhanced the se-
lectivity of Pd towards C=0 rather than C=C
bonds in furfural or typical a,f-unsaturated ke-
tones/aldehydes, leading to high yield of un-
saturated alcohols. The formation of bimet@lilc
Pd-Cu alloy phase in Pd-Cu(3.0)/C catalyst was
clearly observed after reduction with Hsz at 400
°C for 1.5 h, which plays a pivotal role during
the chemoselective hydrogelgpllions. Pd-
Cu(3.0)/C catalyst was found to stable and re-
usable for at least four reaction runs and the
activity and selectivity of the catalyst can be re-
stored to the original after rejuvenation with
Hz at 400 °C for 1.5 h.
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