Effect of Karamunting Fruit Juice (Melastoma malabathricum L.) to Advanced Glycation EndProducts (AGES) and Lipid Profile as Advanced Complications of Diabetes Mellitus

by Triawanti Triawanti

Submission date: 04-Dec-2020 02:15PM (UTC+0700)

Submission ID: 1464423548

File name: Triawanti_et_al._Effect_of_Karamunting. 2017.doc (987K)

Word count: 4216

Character count: 22284

	4						
Paper Title		Effect of Karamunting Fruit Juice (Melastoma					
	malabathricum L.) to Advanced Glycation End-products						
		(AGEs) and Lipid Profile as Advanced Complications of					
	Diabetes Mellitus						
AUTHOR(S) ORDE							
First Author	Full Name	Triawanti					
Second Author	First Name	Eko					
	Last Name	Suhartono					
Third Author	First Name	Yusriandi					
	Last Name	Ramadhan					
Fourth Author	First Name	Oky					
	Middle Name	Fauzul					
	Last Name	Zakina					
Fifth Author	First Name	Pandji					
	Middle Name	Winata					
	Last Name	Nurikhwan					
Sixth Author	First Name	Aditya					
	Last Name	Sanjaya					
Seventh Author	First Name	Gusti Andhika					
	Middle Name	Azwar					
	Last Name	Alam					
CORRESPONDES							
Full Name	Pandji Winata Nurikhwan						
Title	Mr; M.D						
Organisation	Medical Faculty, Lambung Man	Medical Faculty, Lambung Mangkurat University					
Address	Jl. Veteran No. 128						
Postal code	70122	70122					
City	Banjarmasin						
Country	Indonesian						
Telephone	+62819 52 750045						
E-mail	pandji.winata@gmail.com						

ABSTRACT

Hyperglycemia as a result of Diabetes mellitus (DM12 ould lead to an increase in free radicals that lead to oxidative stress, It will end with the formation of Advanced Glycation Ends Products (AGEs) and dyslipidemia which contributed in the complications of diabetes. Karamunting is believed and consumed by local society for treat DM, unfortunately currently there is no scientific data to support it. The purpose of this study was to determined the potential *Karamunting* fruit plants that are typical South Kalimantan by calculating the levels of methyl glyoxal, carbonyl, LDL, HDL, total cholesterol, and triglycerides. This study is consists of six groups each of six male rats. Then do the induction *streptozosin* in groups 2, 3, 4, and 5 mice at a dose of 40 mg / kg intraperitoneally, followed by treatment in the form of: group I and II are given distilled water; group III was given metformin (anti-hyperglycemic medication 12 10 mg / kg; group IV, V, VI granted *Karamunting* fruit juice with successive doses 0:01 mg / g; 0.1

mg / g; 1 mg / g. AGEs results showed that there were a significant reduction of carbonyl levels in fruit juices Karamunting within three doses (0.01, 0.1, and 1 mg / g), ie from 3,273 into 2,598; 2485; and 2.470 (p <0.005) and a significant decrease methyl glyoxal levels, ie from 0039 into 0,021; 0,018; and 0.016 (p <0.005). On result of the levels of LDL, HDL, triglycerides and total cholesterol showed a non-significant results (p> 0.05). It can be concerned that it could lower the level of AGEs compound but not lipid profile significantly. There were no significant differences between the three different doses of metformin and Karamunting (p> 0.05), indicating that the Karamunting has the same efficacy with metformin.

Keywords: Diabetes mellitus, Advanced Glycation Ends Products, Lipid Profile, Melastoma malabathricum L.

1. INTRODUCTION

Diabetes Mc6 itus (DM) is a non-communicable disease which increased steadily from year to year. WHO predicts incre6 in the number of patients with Non Insulin Dependent Diabetes Mellitus (NIDDM) from 8.4 million in 2000 to about 21.3 million in 2030 (Soegondo et al, 2006). Indoensian Health Research (Riskesdas) in 2007, obtained that the proportion causes of death due to DM in the age group 45-54 years take place in 2nd ranks (14.7% in urban areas and 5.8% for rural areas). While the South Kalimantan Health Research (Riskesdas) in 2011, the prevalence of DM in South Kalimantan reached 1.0% (range 0.3 to 1.7%), which six districts / cities with exceeding province prevalence are Banjarmasin, Banjarbaru, Barito Kuala, Tapin, Banjar, and Hulu Sungai Selatan. Hyperglycemia as a result of Diabetes mellitus (DM 12 ould lead to an increase in free radicals that lead to oxidative stress, It will end with the formation of Advanced Glycation Ends Products (AGEs) and dyslipidemia which contributed in the complications of diabetes (Soegondo et al, 2006).

Diabetes Commission of World Health Organization (WHO) recommends the traditional methods for the treatment of diabetes mellitus in order to be further investigated. Plants with neutralizing AGEs and dyslipidemia effects and may provide a useful source of new components oral antidiabetic. (Ogundipe et al., 2003). Karamunting is one of the option.

Karamunting (Melastoma malabathricum L.) is a typical plant growing in South Borneo, easy to be got, rich of commodity, and contains flavonoid that can act as an antioxidant (Faravani, 2008). Karamunting is believed and consumed by local society for treat DM, unfortunately currently there is no scientific data to support it as anti-AGEs and anti-dyslipidemia.

Objective of the Study

The purpose of this study was to determined the potential Karamunting fruit plants that are typical South Kalimantan by calculating the level of six parameters: methyl glyoxal, carbonyl, LDL, HDL, total cholesterol, and triglycerides.

2. LITERATURE REVIEW

AGEs and Dyslipidemia in Diabetes Mellitus

Diabetes mellitus is a chronic metabolic disease characterized by hyperglycaemia due to lack of insulin secretion, inefficacy of insulin or both of the cause (Abbas et al, 2005). Various complications can be caused by poor control of diabetes. These

complications include vascular disease such as systemic (accelerated atherosclerosis), heart disease, microvascular disease of the eye as a cause of blindness and retinal degeneration (diabetic retinopathy), cataracts, kidney damage as a cause of kidney failure and peripheral nerve damage (diabetic neuropathy). Usually when diabetes is detected, this syndrome has been developed and there are one or two complications (Suhartono et al, 2005).

High level of blood glucose in chronic hyperglycaemic state will form AGEs because glucose which binds to proteins (glycated protein) can be oxidized and produce Reactive Oxygen Species (ROS). The combination of glycation and glucose oxidation result in the formation of AGEs (advanced glycogen end-products). The process of formation of AGEs is an irreversible process that lasts a long time and can cause tissue damage and lead to various complications as above (Halliwell et al, 1999; Kariadi, 2001). Low insulin intake, increased ROS, and pancreatic cell damage will induce another metabolic disorder called dyslipidemia, which is marked by increased level of total cholesterol, low-density lipoprotein (LDL) and triglyceride. This condition can pose a risk of coronary artery disease or cardiovascular disease (Fridlyand and Philipson, 2005). Improved blood lipid levels may pose a risk of coronary artery disease or cardiovascular disease. Increased cholesterol levels (hypercholesterolemia) causing arteriosclerosis and the risk of heart disease (myocardial infarction). High serum cholesterol levels may be associated with a genetic predisposition (hereditary), biliary obstruction, and / or dietary intake. Increased triglycerides in a long time will cause obesity. High LDL classesterol, and low HDL cholesterol is a risk for atherosclerotic disease. Conversely, low LDL cholesterol and high HDL cholesterol may reduce the risk of coronary artery disease. (Fridlyand and Philipson, 2005)

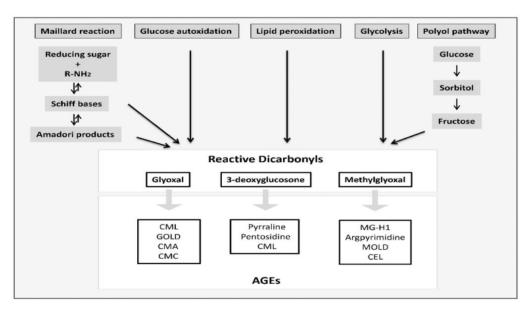


Figure 1. Formation of AGEs (Nowotny, 2015)

Antioxidant and Flavanoid

In order to curb the occurrence of oxidative damage due to the accumulation of AGEs we need a defense system capable of removing, cleaning (scavenger), resist formation or negate the effects of AGEs. The system is known as an antioxidant. Animal studies proved that antioxidants can inhibit the early stages of retinopathy, nephropathy, and neuropathy in diabetes mellitus. Similarly to human studies, an antioxidant shown to inhibit the microvascular complications, decrease the incidence of coronary heart disease, improvement of cardiac autonomic nervous system, and vascular vasodilatation (Suhartono et al, 2007).

The mechanism of exogenous antioxidant activity in reducing the effects of free radicals (free redicals scavenging) is through ionic metal chelating so that the metal ions sequestered and prooxidant effect of metal can be inhibited. For example through the chain termination propagation of free radicals (free redical chains breaking) by acting as a hydrogen donor or hydrogen acceptor resulting in the blockade against free radicals purge and trap the carbonyl group (carbonyl group traps) (Suhartono et al, 2007). One of the proven antioxidant is flavonoid.

Flavonoids are natural phenolic compounds that act as an antioxidant by capturing free radicals, reducing oxidative stress by scavenging the ROS, and decreasing the expression of TNF- α (Siswono, 2005; Tiwari et al, 2002).

Flavonoids can reduce blood cholesterol levels in mice who have hyperlipidaemia and reduce the oxidation of LDL cholesterol which has an important role in the process atherogenesis. Flavonoids reduce cholesterol synthesis by inhibiting the activity of the enzyme acyl-CoA cholesterol acyl transferase (ACAT) in cells HepG2 that play a role in the decline of esterification of cholesterol in the intestine and liver, as well as inhibit the activity of the enzyme 3-hydroxy-3-methylglutaryl-CoA which causes inhibition of cholesterol synthesis. Saponins can bind to bile acids and cholesterol (from food) to form micelles which cannot be absorbed by the intestine. While the tannin in the body will bind to body proteins and will coat the walls of the intestine, so that absorption of fat is inhibited. Additionally, tannins protect the gut against unsaturated fatty acids. Tannin protection process performed in the form of compaction the mucosal lining of the gastrointestinal tract that inhibits the absorption of nutrients (including fats and cholesterol) by the digestive tract. Based on this, allegedly Karamunting fruit which contained flavonoids, saponins and tannins can lower blood cholesterol levels (Metwally 2009 and Terao 2008)

Karamunting (Melastoma malabathricum L.)

Karamunting is one of the plants that often grow on wetlands in South Kalimantan. a wild plant, growing in a place that gets enough sunlight, such as on the slopes, shrubs, and a field that is not too dry. The stem is erect, 0.5-4 m high, has many branches, scaly and hairy. The leaves are single, round or oblong leaves, sharp edges, base rounded and flat edges. Karamunting flowers are numerous, out at the end of branches, reddish purple color flowers. Karamunting fruit when ripped will split and divided into several sections, reddish dark purple, and small brown seeds (See 2008).

Based on empirical studies, plant Karamunting used daily by the people of South Kalimantan to treat treat diarrhea, dysentery, lekorea, hemorrhoids, infections, and toothache. Karamunting plant parts that are often used are the leaves and flowers Karamunting. This plant contains many antioxidant flavonoids, saponins and tannins (Faravani 2008).

3. RESEARCH MODEL

This paper is an experimental research with posttest-only control group design as a method. Mice were used as subjects in the farm of a male rat (Rattus norvegicus), Sprague-Dawley. Mice as many as 36 subject were divided into six groups and each group consisted of 6 rats (replication) were chosen randomly (randomization). Control group is consisted of 3 group (normal, positive control, negative control) and treatment group is also consisted of 3 group (three different doses: 0.01 mg/gBW, 0.1 a/g/gBW, and 1 mg/gBW.) Independent variable is Karamunting fruit juice at a dose of 0.01 mg/gBW, 0.1 mg/gBW, and 1 mg/gBW and Dependent variable is methylglyoxal, carbonyl, LDL, HDL, total cholesterol, and triglycerides which are calculated by spectrophotometry and colorimetric chemical method.

The Research has done as the following step below:

1. Preparation and acclimatization

The preparation stage includes the preparation of tools and materials, as well as the adaptation of rats before being given treatment for 7 days.

2. Operations

In this step, the production of Karamunting (Melastoma malabathricum L.) fruit juices with aquadest results in the form of liquid juice is done; inducing streptozosin in group 2, 3, 4, and 5 at a dose of 40 mg/kg BW intraperitoneally; measurement of blood sugar levels after induction streptozosin; giving treatment in all groups for 28 days, namely: the first group was given aqudest and 20 g of feed; second group was given metformin 1 and kg body weight and feed 20g; Group IV was given 0.01 mg/g of Karamunting fruit juice and 20 g of feed; group V was given 0.1 mg/g of Karamunting fruit juice and 20 g of feed; and Group VI was given 1 mg/g of Karamunting fruit juice and 20 g of feed; Last step is termination of subject to take a blood from the heart of white mice and measured the levels of methyl glyoxal, carbonyl, LDL, HDL, total cholesterol, and triglycerides by spectrophotometry ($\lambda = 576$ nm) and colorimetric chemical method.

3. Data Analysis

ANOVA statistical test $\alpha = 95\%$, followed by a post-11: test to determine the differences between the results of methyl glyoxal, carbonyl, LDL, HDL, total cholesterol, and triglycerides in the positive control group vs treatment group

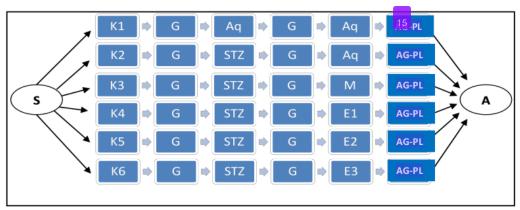


Figure 2. Research Scheme

Note: 17 K1 = normal group

K2 = negative control group S = sample

K3 = positive control group

K4 = treatment group (dose 1)

K5 = treatment group (dose 2)

K6 = treatment group (dose 3)

M = metformin administration

AG-PL = AGEs and Profile Lipid

G = Glucose measurement

A = Analysis of Data

Aq = aquadest administration

STZ = streptozosin intraperitoneal administration

E1 = karamunting juice administration (dose 1)

E2 = karamunting juice administration (dose 2)

E3 = karamunting juice administration (dose 3)

4. DATA ANALYSIS

Total 36 rats are examined and the results are shown below:

Table 1. Methylglyoxal Level each group

Replication	Group I	Group II	Group III	Group IV	Group V	Group VI
	Normal	Negative	Metsormin	0.01 mg/dl	0.1	1 mg/dl
	mg/dl	mg/dl	mg/dl		mg/dl	
1	1.820	3.500	2.140	3.050	2.860	2.140
2	2.180	3.450	3.360	2.090	2.410	2.730
3	1.680	2.090	2.230	2.270	2.450	2.270
4	2.270	3.770	2.860	3.090	2.320	3.000
5	2.140	3.360	2.910	2.820	2.180	2.320
6	2.730	3.450	2.680	2.270	2.680	2.360
Mean	2.136	3.273	2.697	2.598	2.485	2.470
SD	0.368	0.595	0.459	0.438	0.248	0.326

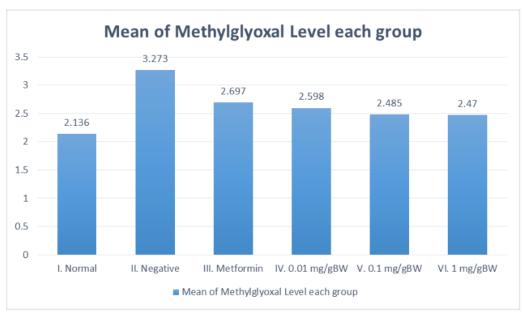


Figure 3. Mean of Methylglyoxal Level each group

The ANOVA concluded there is a significant result for carbonyl level (p= 0,002). Post hoc also explained, there is a significant results for group 1 and 2 (p = 0.001). It means there is a significant increase in the level of AGEs within hyperglycemic state in DM. Group 2 vs Group 3 showed unsignificant results (p= 0.201), it explained that metformin could not reduce the level of methylglioxal. Group 2 vs Group 4 showed no signifiancy (p = 0.091) means at 0.3 dose is not significantly enough to reduce the methylglyoxal, but the result in the Group 2 vs Group 5 and Group 2 vs Group 5 are signifiant (p= 0.031; p= 0.027), mean at 0.1 dose and 1 mg dose can reduce the level of methylglyoxal in the blood significantly.

Table 2. Carbonyl Level each group

		1				
Replication	Group I	Group II	Group III	Group IV	Group V	Group VI
	Normal	Negative	Metformin	$0.01 \frac{2}{m} g/dl$	0.1	1 mg/dl
	mg/dl	mg/dl	mg/dl		mg/dl	
1	0.025	0.031	0.018	0.020	0.015	0.023
2	0.023	0.043	0.022	0.029	0.024	0.021
3	0.020	0.042	0.022	0.026	0.017	0.020
4	0.025	0.044	0.021	0.016	0.017	0.018
5	0.013	0.041	0.028	0.015	0.010	0.010
6	0.023	0.030	0.027	0.019	0.022	0.004
Mean	0.022	0.039	0.023	0.021	0.018	0.016
SD	0.005	0.006	0.004	0.006	0.005	0.007
			-			

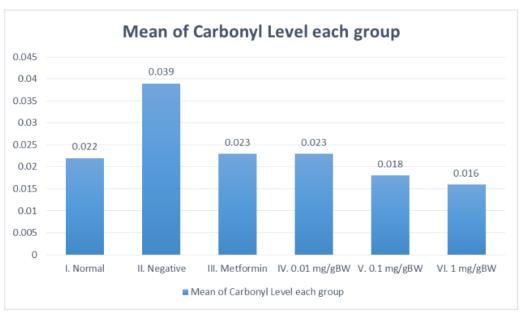


Figure 4. Mean of Carbonyl Level each group

ANOVA concluded there is a significant result for carbonyl level (p= <0.001). Moreover, there is a significant results for group 1 and 2 (p = <0.001). It means there is a significant increase in the level of carbonyl within hyperglycemic state in DM. Moreover, Group 2 vs Group 3, Group 2 vs Group 4, Group 2 vs Group 5, Group 2 vs Group 6 results are signifiant consequtively (p = <0.001) mean at 0.01; 0.1 and 1 mg dose can reduce the level of carbonyl in the blood significantly.

Table 3. Cholesterol Level each group

			8			
Replication	Group I	Group II	Group III	Group IV	Group V	Group VI
	Normal	Negative	Metformin	0.01	0.1	1 (mg/dl)
	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	
1	120	108	129	123	108	100
2	103	121	112	115	122	136
3	150	112	86	130	106	107
4	121	139	127	115	110	112
5	118	111	115	107	103	94
6	127	81	93	109	105	90
Mean	123.2	112	110.3	116.5	109	106.5
SD	15.3	18.9	17.5	8.6	6.8	16.5

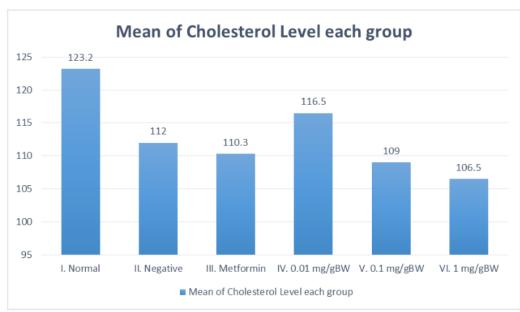


Figure 5. Mean of Cholesterol Level each group

As seen above, three doses of Karamuntung respectively could decrease cholesterol, the higher the dose given, less cholesterol level will be achieved. The efficacy of metformin could be achieved also by Karamunting. Unfortunately, in cholesterol analysis, ANOVA's result showed unsignificant value (p= 0.430), but bivariate analysis used to compared between metformin vs Group 4; 5 and 6, the results are unsignificant (p= 0.458; 0.868; and 0.706). It means Karamunting's efficacy are same as metformin.

Table 4. HDL Level each group

			8			
Replication	Group I	Group II	Group III	Group IV	Group V	Group VI
	Normal	Negative	Metformin	0.01	0.1	1 (mg/dl)
	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	(mg/dl)	
1	53	57	58	56	57	53
2	56	56	45	58	59	54
3	52	56	43	53	58	59
4	51	51	55	55	50	54
5	53	57	51	58	56	42
6	58	39	34	51	46	30
Mean	53.8	52.7	47.7	55.2	54.3	48.7
SD	2.6	7.0	8.8	2.7	5.1	10.7
				•		

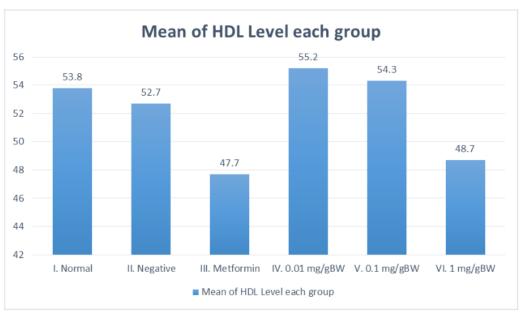


Figure 6. Mean of HDL Level each group

As well as Cholesterol, in HDL's result, three doses of Karamuntung respectively could decrease HDL level, the higher the dose given, less HDL level will be achieved. Unfortunately, in HDL analysis, ANOVA result showed unsignificant value (p= 0.313). as the chart show, the metformin's results are similar with 1 mg/gBW dose of karamunting, and there is no signifant value (p= 0.0863) that indicating 1 mg/gBW dose of karamunting has same efficacy as metformin.

Table 5. LDL Level each group

		1				
Replication	Group I	Group II	Group III	Group IV	Group V	Group VI
	Normal	Negative	Metformin	0.01 mg/dl	0.1	1 mg/dl
	mg/dl	mg/dl	mg/dl		mg/dl	
1	48	35	53	50	35	32
2	29	43	50	40	47	59
3	72	29	29	61	30	33
4	49	67	47	46	43	41
5	45	33	49	35	32	37
6	42	22	44	42	43	52
Mean	47.5	38.2	45.3	45.7	38.3	42.3
SD	14.0	15.7	8.5	9.0	6.9	10.9

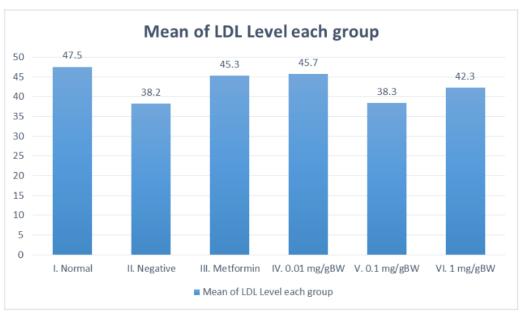


Figure 7. Mean of LDL Level each group

For LDL, the result is quiet diverse. Moreover, in LDL statistic analysis, ANOVA result showed unsignificant value (p=0.603).

Table 6. Triglysceride Level each group

		1				
Replication	Group I	Group II	Group III	Grouz IV	Group V	Group VI
	Normal	Negative	Metformin	0.01 mg/dl	0.1	1 mg/dl
	mg/dl	mg/dl	mg/dl		mg/dl	
1	94	81	91	84	81	75
2	91	109	86	85	82	117
3	131	133	69	82	91	77
4	105	107	126	72	83	84
5	100	103	75	69	73	74
6	133	102	73	78	81	42
Mean	109	105.8	86.7	78.3	81.8	78.2
SD	18.4	16.6	20.9	6.5	5.7	23.9

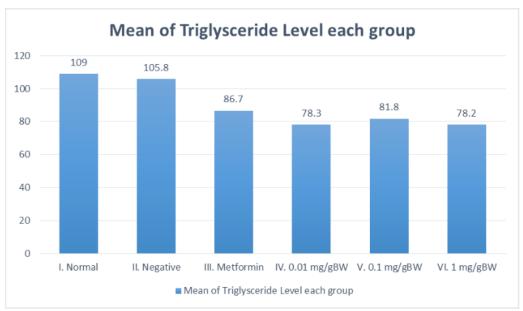


Figure 8. Mean of Triglysceride Level each group

In triglysceride analysis, ANOVA result showed significant value (p=0.006). Post Hoc revealed that Group I vs VI has a significant value (p=0,039), therefore means at 1 mg dose, it could decrease triglyceride level.

5. DISCUSSION

Methylglioxal and Carbonyl

Based on the analysis test above obtained significant results. Post hoc also explained, there is a significant results for group 1 and 2. It means there is a significant increase in the level of methylglyoxal and carbonyl within hyperglycaemic state in DM.

As seen also, the levels in normal mice (group 1) are low but high in negative control group (group 2), it can be concluded that the increase in blood sugar levels (hyperglycaemia) in experimental animals is directly proportional to the increase in the levels of methylglyoxal and carbonyl.

In groups 2 and 3 also showed a significant result, this means that administration of metformin in groups 3 generate a significant decrease in the levels of methylglyoxal and carbonyl. This proves that metformin which is the standard treatment of diabetes disease which aims to lower glucose may also reduce levels of methylglyoxal and carbonyl in the blood. In addition, Karamunting at any doses could also reduce their levels in the blood were significantly as the expectations of the research goal. There is no difference between metformin and Karamungting levels of methylglioxal and carbonyl (p> 0.05), proved that administration of Karamuning fruit juice has an efficacy as metformin (even better) for lowering their levels. Metformin is one of the standard drugs are often used for DM disease, this drug works to improve insulin sensitivity, thereby improving glucose uptake into tissues (Askandar, 2007)

Administration of Karamunting juice on three different doses reduce the level of methylglyoxal and carbonyl in the blood significantly because Karamunting has flavonoid as an antioxidant. The reaction mechanism of flavonoids as antioxidants occur through the process of scavenging reactive oxygen elecies (Siswono, 2005). Based on research, the provision of antioxidants could capture free radicals, reduce oxidative stress, and decrease the expression of TNF-\alpha. Phytochemical compounds such as flavonoids was able to reduce the complications of diabetes by reducing oxidative stress, ROS and TNFα (Tiwari et al, 2002) .Flavonoid also act as potential inhibitors in the uptake of glucose by blocking glucose transport is influenced by the structure of the flavonoid itself (Jae, 1999). Flavonoids are also expected to inhibit oxidative damage to pancreatic β cells. In the study Okamoto (1996) reported that streptozosin pancreatic β cell damage by inducing the formation of hydroxyl free radicals. Hydroxyl free radicals attack the pancreatic β cells essential substances (such as cell plasma membrane, lysosomes, mitochondria and DNA) and initiate pancreatic β cell damage (Okamoto, 1996). Flavonoids are thought to have hypoglycemic mechanism through inactivation of hydroxyl free radicals that attack the pancreatic β cells, so the cells can secrete insulin β better (Fahri et al, 2005).

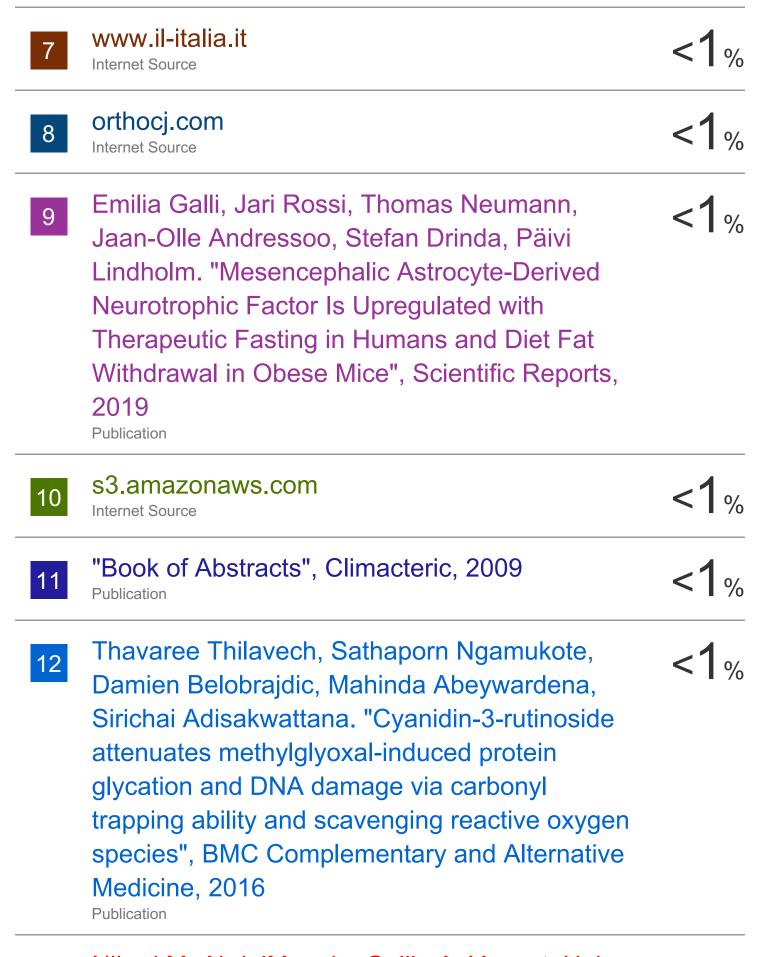
Lipid Profile

The results for lipid profile was respectively insignificant. There are several statement regarding this result. 1) The duration for created dyslipidemia is a long term result. As this research has interfere the condition for 28 days, condition for dyslipidemia couldn't occurred, therefore future research have to be done for extend the duration of intervention for more than 28 days. 2). since there is no disorder and diverse result in this experiment in term of LDL, HDL, Triglyceride, and Cholesterol. More parameter needed to be researched to prove the relationship between dylipidemia and chronic DM such as: VLDL, Apo B-100, and histologic imaging of blood vessel to looking for atherosclerotic lesions. 3) Karamuting at 1 mg/gBW dose are able to reduce LDL, HDL, Triglyceride and Cholesterol, and has same efficacy as metformin.

In the other hand, hyperlipidaemia is a secondary condition due to inactivation of insulin. In a physiologic condition, insulin will hold back the synthesis and secretion of hepatic very low-density lipoprotein (VLDL) by inducing apoprotein B-100 to degradate. Apoprotein B-100 is a major apoprotein needed to synthesize VLDL. In patient with insulin resistance, an increase on non-esterificate lipid acid flux and lack of insulin binding to its receptor will lead to overproduction of VLDL.

6. CONCLUSION

Karamunting could decrease methylglyoxal and carbony level. It could also decrease the level of triglyceride significantly but not significant for LDL, HDL, and Cholesterol. Moreover, its efficacy are in the same level as metformin to recude methylglyoxal, carbonyl, triglyceride, LDL, HDL, and Cholesterol.


7. REFERENCES

- Abbas AK, Maitra A. 2005. The Endocrine System in Basis of Disease. Philadelphia: Elsevier Saunders.
- Fahri C, Sutarno, Listyawati S. (2005) Blood Glucose and Total Cholesterol Content of Hyperglycemic White Male Rat (Rattus norvegicus L.) After Orally Intakes of Methanol Meniran (Phyllanthus niruri L.) Root Extract. Biofarmasi: 3(1): 1-6.
- Faravani M. The population biology of straits rhododendron (Melastoma malabathricum L.). Kuala Lumpur: Faculty of Science University of Malaya. 2008.
- Fridlyand LE. and Philipson LH. 2005. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches. Ann. NY. Acad. Sci.1066: 136 151.
- Halliwell B, Gutteridge JMC. 1999. Free Radicals in Biology and Medicine. New York: Oxford University Press.
- Indonesia. Badan Penelitian dan Pengembangan Kesehatan. (2011). Riset kesehatan dasar: Riskesdas, 2011. [Jakarta]: Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan RI
- Kariadi KS. 2001. Peranan Radikal Bebas dan Antioksi dan pada Penyakit Degeneratif Khususnya Diabetes Mellitus. Bandung: Bagian Penyakit Dalam Fakultas Kedokteran/RS Hasan Sadikin.
- Jae BP. (1999) Flavonoids Are Potential Inhibitors of Glucose Uptake in U937 Cells. Academic Press. Biochemical and Biophysical Research Communications; 260: 568–574.
- Metwally MAA, El-Gellal AM, El-Sawaisi SM. (2009). Effects of silymarin on lipid metabolism in rats. World App Sci Jl 12, 1634-1637.
- Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules. 2015; 5(1):194-222.
- Ogundipe OO, Moody JO, Akiyemi TO, Raman A. 2003 Hypoglicemic potentials of methanolic extracts of selected plant foods in alloxanized mice.
- Okamoto, H. (1996). Okamoto Model For β-Cell Damage. Recent Advances Lesson From Animal Diabetes VI. 75th Anniversary of The Insulin Discovery. Birkhauzer, Berlin: Elcazar Shafir.
- See KS. Establishment of cell suspension culture of Melastoma malabathricum L. forthe production of anthocyanin. Malaysia: University Sains Malaysia. 2008.

- Soegondo S, dkk. 2006. Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia 2006. Jakarta: Perkumpulan Endokrinologi Indonesia. Hlm 7-9.
- Suhartono E, 2008, Potention of Aquaeus Extract Kalakai as Antiinflammation by Oxidative Mechanism, Congress International Korean Medicine, Sangji University Korea.
- Suhartono E, Bakhriansyah M, Handayani R. (2010) Effect of Stenochlaena palustris Extract on Circulating Endothelial Cells Marmota caligata Induced Fever. Majalah Farmasi Indonesia; 21 (3): 166 170.
- Suhartono E, Rohman T, Setiawan B, dkk. 2005. Model Pembentukan Advanced Glycation Ends Products (AGEs) dan Modifikasi Protein Akibat Reaksi Glikosilasi. Majalah Kedokteran Indonesia; 55(11): 681-5.
- Terao J, Yoshichika K, Kaeko M. (2008). Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17, 291-293.
- Tiwari AK, Rao JM. 2002. Diabetes mellitus and Multiple Therapeutic Approaches of Phytochemicals: Present Status and Future Prospect. Current Science; 83: 30-38.

Effect of Karamunting Fruit Juice (Melastoma malabathricum L.) to Advanced Glycation End-Products (AGES) and Lipid Profile as Advanced Complications of Diabetes Mellitus

ORIGIN	IALITY REPORT			
9 SIMIL	% ARITY INDEX	6% INTERNET SOURCES	7% PUBLICATIONS	1% STUDENT PAPERS
PRIMAF	RY SOURCES			
1		repress.com		1%
2	archive.o			1%
3	dc.uwm.e			1%
4	sinta3.ris	tekdikti.go.id		1%
5	Arisetian NIMODIF AND RO CULTUR CHRONI	i Nandar Kurniav to, Nanik Setijow PINE ON CALCIU S EXPRESSION RE CELL LINE SH C HIPERGLYCE of Research -GR	vati. "THE EFF JM INTRACEL I IN NEURON H-SY5Y INDUC EMIA", Internat	ECT OF LULAR CE tional

M. Aboul-Ela, Mohamed A. Shreadah.

"Hepatoprotective Activity of Chitosan
Nanocarriers Loaded with the Ethyl Acetate
Extract of a <i>Stenotrophomonas</i> sp.
Bacteria Associated with the Red Sea Sponge
<i>Amphimedon ochracea</i> in
CCI₄ Induced Hepatotoxicty in
Rats", Advances in Bioscience and
Biotechnology, 2017

Publication

13

14	arizona.openrepository.com Internet Source	<1%
15	www.apdsc.co.in Internet Source	<1%
16	news.ldlcholesterolcare.com Internet Source	<1%
17	Atina Rahmawati, Agnes Murdiati, Yustinus Marsono, Sri Anggrahini. "Effects of Complex Carbohydrate from White Jack Bean (Canavalia ensiformis L. DC.) Flour after Autoclaving-Cooling Cycles on Short Chain Fatty Acids, Digesta Cholesterol Content and Bile Acid Binding in Hypercholesterolemic Rats", Pakistan Journal of Nutrition, 2018	<1%

8 www.fresenius-kabi.com

Publication

<1%

Exclude quotes

19

On On Exclude matches

< 10 words

Exclude bibliography