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Abstract
Air overpressure (AOp) induced by rock blasting is an undesirable phenomenon in open-pit mines and civil construction 
works. The prediction of AOp has been always a complicated task since many parameters have potential to affect the propa-
gation of air waves. This study aims to assess the capability of a new hybrid evolutionary model based on an integrated 
adaptive neuro-fuzzy inference system (ANFIS) with a stochastic fractal search (SFS) algorithm. To assess the reliability and 
acceptability of ANFIS-SFS model, the particle swarm optimization (PSO) and genetic algorithm (GA) were also combined 
with ANFIS. The proposed models were developed using a comprehensive database including 62 sets of data collected from 
four granite quarry sites in Malaysia. Performances of the ANFIS-SFS, ANFIS-GA, and ANFIS-PSO models were checked 
using statistical functions as the performance criteria. The obtained results showed that the proposed ANFIS-SFS model, 
with root mean square error of 1.223 dB, provided much higher generalization capacity than the ANFIS-PSO (RMSE of 
1.939 dB), ANFIS-GA (RMSE of 2.418 dB), and ANFIS (RMSE of 3.403 dB) models in terms of predicting AOp. This 
clearly demonstrates the effectiveness of SFS to provide a more accurate model in the AOp prediction field.
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1 Introduction

In recent decades, the number of surface mining operations 
has dramatically grown across the world. In these opera-
tions, the widely used methods of drilling and blasting are 
of the lowest expense. With every explosion, a huge vol-
ume of energy is released in the form of temperature and 

pressure. Only a small part of the energy released is applied 
to fragmenting and displacing the rock mass. The rest of 
the energy causes adverse effects such as air blast, blast 
vibrations, flyrock, dust, and noise [1–12]. Once blast takes 
place, explosion-induced gases are suddenly released to 
atmosphere, which produces air pressure waves. The unspent 
volume of energy that still exists in these gases elevates the 
air pressure level exceeding the normal atmospheric level. 
This phenomenon is recognized as air overpressure (AOp). 
The AOp can be created due to many reasons, including 
the gases released into the air after detonation, the rock 
face displacement, ground vibrations, stemming blowout, 
and displacement that occurs around the bore hole. In case 
of any certain block, a different combination of the above 
issues may form [13].

The air pressure wave propagation has been described 
as a function of distance; it has been standardized using the 
cube root of the charge mass [14, 15]. Generally, AOp is 
an atmospheric pressure wave that contains audible sound 
with high frequency in addition to sub-audible sound with 
low frequency that is too low to be heard by human beings. 
In case there is a sufficient amount of sound pressure, the 
sound waves may lead to damage. AOp does not result in 
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damage, but causes annoyance; it might lead to a conflict 
between the managers of the mine and people living in the 
neighboring area [15, 16].

It is possible to design blasts in a way to keep vibrations 
and AOp levels in an acceptable limit [15, 17]. Once the 
waves pass from a certain point, the air pressure rapidly 
rises; then, it is fallen slowly; afterward, it returns to the 
ambient value after some oscillations. In this wave, the 
maximal excess pressure is recognized as the peak air over-
pressure, which is normally gauged in decibels (dB) with 
considering the linear frequency weighting (L). Equation (1) 
can change AOp to dB.

where Pr = 2 × 10−6 Pa (pressure of the lowest audible 
sound) and P is the measured AOp in terms of Pa. It is not 
easy to predict the maximum level of AOp at a certain loca-
tion with a high accuracy; the reason is the uncontrollable 
and unpredictable impacts of predominant atmospheric con-
ditions [15]. The cube root is the most commonly used fac-
tor in predicting AOp, which incorporates both the distance 
from the blast face (D) and the maximum charge per delay 
(MC). An overview of blast design parameters is also shown 
in Fig. 1. In this figure, B, S, and T are the burden, spacing, 
and stemming variables, respectively.

In recent years, practitioners and researchers have 
applied a variety of artificial intelligence techniques to 
different mining, civil, and geo-engineering applications 
[18–39]. Khandelwal and Singh [16] developed an ANN 
for the purpose of predicting AOp. The results obtained 
by their developed mode were compared to those of the 
multivariate regression analysis (MVRA). The comparative 
study confirmed that ANN outperformed the other predictor 
in terms of predicting AOp. For AOp prediction, support 
vector machine (SVM) was also developed by Khandelwal 

(1)AOp = 20 log

(
P

Pr

)

and Kankar [40]. SVM was found as an efficient model to 
predict the AOp in comparison with the generalized pre-
dictor equation, and the results showed the superiority of 
the SVM to the rival in doing the defined task. In the study 
conducted by Hajihassani et al. [41], the implementation 
of a hybrid evolutionary model based on integrated neural 
network (NN) with particle swarm optimization (PSO) was 
investigated to estimate AOp. The results obtained using 
the PSO-NN were compared with those of the empirical 
formula. Findings confirmed that their proposed model 
performed efficiently regarding the accurate prediction 
of AOp. Hasanipanah et al. [42] established some models 
based on ANN, FS, and ANFIS to predict AOp. According 
to their results, ANFIS showed better performance than 
the ANN and FS models. In another study, Hasanipanah 
et al. [43] developed a practical hybrid model by integrat-
ing support vector regression (SVR) with PSO for the aim 
of the AOp prediction. Their statistical results revealed the 
superiority of PSO-SVM model over SVM in terms of the 
accuracy level. Alel et al. [44] suggested the application 
of multi swarm algorithm (MSO) to predict the AOp value 
and showed its effectiveness in this field. Recently, Nguyen 
et al. [45] have offered several types of ANN in estimating 
the AOp. AminShokravi et al. [46] presented the linear 
and nonlinear equations for the AOp prediction through 
PSO. According to their results, the prediction accuracy 
of the PSO-based models was excellent. In another study, 
hybridization of the random forest (RF) and ANN models 
for the purpose of predicting AOp was tested by Nguyen 
and Bui [47]. They showed that the proposed ANN-RF 
model produced better results than the RF and ANN mod-
els. For the same purpose, Zhou et al. [48] offered a hybrid 
optimization method based on firefly algorithm (FFA) and 
fuzzy system (FS). They demonstrated the successful appli-
cation of FFA-FS as an efficient model for predicting AOp. 
Nguyen and Bui [49] predicted the AOp value through 
hybridizing the genetic algorithm (GA) with the boosted 
smoothing spline. To check the acceptability of the GA-
boosted smoothing spline model, several other soft com-
puting models were also implemented. According to their 
results, the proposed GA-boosted smoothing spline model 
is useful as an alternative model for the prediction of AOp. 
In another study, Bui et al. [50] offered several soft com-
puting models such as ANN, k-nearest neighbors, SVM, 
RF, and boosted regression trees for the prediction of AOp. 
They used 113 datasets gathered from an open-pit mine in 
Vietnam. Their results indicated that ANN outperformed 
the other predictive models in terms of root mean square 
error (RMSE). For the same purpose, the Cubist, gradient 
boosting machine, and RF models were investigated by Fig. 1  A view of the blasting pattern structure [50]
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Nguyen et al. [51]. They concluded that the lowest RMSE 
and the highest effectiveness were offered by the Cubist 
model.

The present study develops a practical hybrid evolution-
ary model using an integrated adaptive neuro-fuzzy infer-
ence system (ANFIS) with a stochastic fractal search (SFS) 
algorithm aiming at predicting the blast-induced AOp. To 
assess the reliability and acceptability of the ANFIS-SFS 
model, two hybrid models of ANFIS optimized with PSO 
and genetic algorithm (GA) were also used. At the final step, 
a comparison was made on the predictions made by the mod-
els in terms of the accuracy level of the predicted values.

2  Research significance

Study of blasting is especially important to identify the 
undesirable phenomena, thereby minimizing potential dam-
age to the surroundings. It is well known that the AOp is one 

of the most particular concerns induced by mine blasting. 
Therefore, the present study aims to present the accurate and 
practical models to predict AOp. To this aim, an integrated 
expert system comprising of ANFIS and SFS algorithm is 
proposed, and then to check its results, GA and PSO algo-
rithms are also developed. To our knowledge, the ANFIS-
SFS model has not been used to predicting the blast-induced 
AOp in different timescales as of yet.

3  Sources of database

Four quarry sites of granite rock located in Malaysia were 
taken into consideration, and totally 62 blasting operations 
were meticulously studied [41]. More specifically, the sites 
are near the Johor city that is the capital of the Johor State, 
Malaysia (see Fig. 2). In the sites studied, granite quarry 
is blasted by means of blast holes of 75, 89, and 115 mm 
of diameter and the main explosive is ANFO (ammonium 

Fig. 2  Sites studied for the prediction of AOp [41]
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nitrate/fuel oil). The stemming material used in this study 
is fine gravels. Table 2 describes the blasting sites of the 
case studies. The parameters taken into account in the data 
gathering process were B, T, S, powder factor (PF), depth of 
the blast holes, and rock quality designation (RQD). In each 
of the blasting operations, AOp was checked by means of 
VibraZEB instrument. This instrument recorded AOp values 
that were in the range of 88 dB to 148 dB. In all cases, AOp 
was measured in front of the quarry bench and roughly per-
pendicular to it. Remember that D ranged from 300 to 600 m 
in various sites. Descriptive statistics for modeling param-
eters are shown in Table 1 and Fig. 3. Note that Fig. 3 shows 
the values of all parameters used in the modeling processes 
gathered from 62 blasting events. It is worth mentioning that 
the other parameters such as B, S, and T were determined 
using blasting design pattern.

4  Predicting the blast‑induced AOp

This section describes how SFS, PSO, and GA were imple-
mented to improve the ANFIS performance. The proposed 
models were first trained using 50 datasets out of 62 data-
sets (80%); then, they were tested using the rest of datasets 
(20%).

4.1  Integrated ANFIS with SFS

The ANFIS algorithm, as a popular machine learning 
method, has been widely used in order to address complex 
nonlinear problems [52–56]. This efficient algorithm inte-
grates the neural network with the fuzzy inference system 
[57]. ANFIS makes use of least squares and gradient descent 
algorithms to perform a learning model [58]. ANFIS has 
been found a powerful tool applicable effectively to pre-
diction problems. In the following, a five-layer ANFIS is 
described [58].

Within the first layer, i.e., the fuzzification layer, all nodes 
are supposed as adaptive inputs.

where �Ai

(
x1
)
 and �Bi−2

(
x2
)
 stand for Gaussian membership 

functions and n denotes the number of fuzzy sets for differ-
ent input variables [58].

Within the second layer, i.e., the product layer, every node 
evaluates the firing strength of specific rule with the use of 
Eq. 4.

Within the third layer, i.e., the normalized layer, the nor-
malization process is carried out with the use of Eq. 5 with 

(2)O1
i
= �Ai

(
x1
)

for i = 1, 2,… , n

(3)O1
i
= �Bi−2

(
x2
)

for i = 3, 4,… , n

(4)O2
i
= �i = �Ai

(
x1
)
�Bi

(
x2
)

with i = 1, 2

Table 1  Descriptive statistics 
for modeling parameters

HD depth of the blast holes, PF powder factor, MC maximum charge per delay, T stemming, B burden, 
S spacing, RQD rock quality designation, NoH number of holes, D distance from the blast point, AOp air 
overpressure

Parameter Minimum Maximum Mean Standard error Standard deviation Skewness

HD 10 25 15.145 0.495 3.896 0.760
PF 0.34 0.76 0.518 0.014 0.109 − 0.027
MC 60 171 88.153 3.422 26.946 1.392
T 1.7 3 2.087 0.034 0.268 1.060
B 1.5 3.2 2.366 0.061 0.483 0.293
S 2.65 4 3.318 0.053 0.421 − 0.220
RQD (%) 60 91 76.823 1.222 9.618 − 0.174
NoH 12 63 39.871 1.620 12.757 − 0.060
D 300 600 498.387 18.179 143.140 − 0.699
AOp 89.1 126.3 105.095 1.274 10.034 0.263
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Fig. 3  A view of all parameters used in this study and their values
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the summation of the ith rule’s firing strength ratio to all 
rules’ firing strength [58].

Within the fourth layer, the defuzzification process is car-
ried out. In this layer, each node is adaptable with Eq. 6:

where wi signifies the output of the third layer and 
{
ki
1
, ki

2
, ki

0

}
 

represents the variable sets of w̄i node.
Within the fifth layer, i.e., the output layer, the output is 

formed through summation of the output of the previous 
layer using Eq. (7):

In ANFIS, three different models are involved, i.e., the 
fuzzy C-Means clustering (FCM), subtractive clustering 
(SCM), and grid partitioning (GP). According to the litera-
ture that has confirmed FCM as the most effective model, it 
was chosen for the ANFIS algorithm to be applied to pre-
diction purposes. FCM is elaborated in detail by Nikafshan 
Rad et al. [57].

In recent years, meta-heuristic algorithms have been suc-
cessfully implemented when solving a variety of problems, 
especially for optimization purposes. For instance, SFS is 
a meta-heuristic algorithm that has been designed based 
on the natural phenomenon of growth. This algorithm has 
been found effective in improving ANFIS and optimizing 
the membership functions elements. More specifically, it is 

(5)O3
i
= w̄i =

wi

w1 + w2

i = 1, 2

(6)O4
i
= w̄ifi = w̄i

(
ki
1
x + ki

2
y + ki

0

)

(7)O5
i
= overall output =

�

i

w̄ifi =

∑
i wifi

∑
i wi

; i = 1, 2

widely known that ANFIS suffers from limitations like quiet 
convergence and getting trapped in local optima. SFS has 
the capacity required for enhancing the convergence rate 
of ANFIS and also helping it to keep distance from local 
minima. With the use of diffusion, the particles that exist 
within the new algorithm will be capable of searching the 
search space with a higher efficiency. Two key parts of opti-
mization in SFS are diffusing and updating processes. Dur-
ing the process of diffusing, each particle diffuses around its 
current position in a way to satisfy intensification property.

On the other hand, during the process of updating, SFS 
finds the way each particle in the group can update its own 
position rather than updating the other particles’ position. 
Based on Fig. 4 [59], the optimal particle created from the 
diffusing process in SFS is the isolated particle that is admit-
ted; the others are then rejected. In addition, the process of 
updating gives motivation to researchers to explore prop-
erties in meta-heuristic algorithms. At the diffusion step, 
two statistical techniques exist that can be used for particles 
production: Levy flight and Gaussian. Early studies have 
reported faster concentration of the Levy flight in compari-
son with the Gaussian walk in little generations. However, in 
exploring global optima, the Gaussian walk is more encour-
aging [60]. For more detailed information in regard to the 
SFS algorithm, the study conducted by Salimi [59] can be 
referred to. The pseudocode of the ANFIS-SFS is presented 
in Fig. 5.

4.2  ANFIS integrated with PSO and GA

To examine the performance quality of SFS in ANFIS, two 
popular optimization algorithms, i.e., GA and PSO [61–65], 
were considered and also applied to the optimization of 
ANFIS. Additionally, to minimize prediction errors in the 
present study, a number of parameters were taken into con-
sideration. In the implementation of the models, two tech-
niques were adopted: least square and back-propagation. The 
optimal number of fuzzy rules was determined using the 
trial-and-error method.

When modeling GA-ANFIS, the maximum iteration was 
fixed at 300, and the minimum error was fixed at 1e−5. 
Moreover, the mutation and crossover rates were set to 0.3 
and 0.7, respectively. Furthermore, various values ranging 
from 50 to 400 were examined in order to reach the opti-
mal number of populations (see Table 2). As can be seen in 
this table, with fixing the number of populations at 250, the 
minimum RMSE was obtained. The inertia weight and the 

Fig. 4  Particle diffusion [59]
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Fig. 5  ANFIS-SFS pseudocode
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number of iterations in ANFIS-PSO were set to 1 and 1000, 
respectively. Moreover, various values were examined for 
the aim of choosing the optimal number of particles and 
coefficients of velocity equation (C1 and C2), as shown in 
Tables 3 and 4. These tables show that the minimum RMSE 
were attained for C1 = C2 = 1.75 and the number of parti-
cles = 250. As a result, these values were applied to experi-
ments carried out in the present paper. Figures 6 and 7 illus-
trate the ANFIS schemes optimized using the GA and PSO 
algorithms.

Table 2  Selection of the proper 
population size in ANFIS-GA

Population size Network result

RMSE

Train Test

50 5.431 5.196
100 4.560 4.239
150 4.672 4.198
200 4.145 3.802
250 3.771 3.039
300 3.819 3.327
350 3.995 3.891
400 4.347 4.105

Table 3  Selection of the proper 
C1 and C2 in ANFIS-PSO 
modeling

C1 C2 Network result

RMSE

Train Test

1.333 2.667 4.311 3.919
2.667 1.333 4.128 3.877
1.5 1.5 3.722 3.540
2 2 3.295 2.712
1.75 1.75 2.919 2.327
1.5 1.75 3.118 2.774
1.75 1.5 3.541 3.229

Table 4  Selection of the proper 
number of particles in ANFIS-
PSO modeling

No. of particle Network result

RMSE

Train Test

50 4.116 3.882
100 3.866 3.559
150 3.528 3.327
200 3.291 2.580
250 2.887 2.115
300 3.157 2.766
350 3.418 3.382
400 3.701 3.644

Fig. 6  ANFIS-GA chart [61]
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5  Results and discussion

The present paper was aimed at examining the efficiency 
of the SFS algorithm in optimizing ANFIS to predict blast-
induced AOp. In this section, the way the ANFIS-SFS model 
performed in regard to the AOp prediction is discussed; after 
that, the results obtained from the proposed ANFIS-SFS 
model will be compared to those of the other models. As 
mentioned earlier, a total of 62 datasets were applied to this 
study, among which 50 datasets were allocated to training 
and 12 datasets were allocated to testing purposes. Then, 
the ANFIS-SFS model performance was assessed regarding 
RMSE, mean absolute error (MAE), mean average percent-
age error (MAPE), and coefficient of determination (R2) 
[66–80]:

where n stands for the number of data (n = 62), and Ai and 
Pi signify the actual and predicted AOp values, respectively. 
Table 5 presents the RMSE, MAE, and MAPE (%) values 
attained by the predictive models. The table shows that the 
SFS-ANFIS outperformed the others in terms of predicting 
the AOp value. In addition, Figs. 8, 9, 10, and 11 demon-
strate the actual versus estimated AOp values with the use 
of all predictive models. Accordingly, SFS was found more 

(8)MAE =
1

n

n∑

i=1

|
|Ai − Pi

|
|

(9)RMSE =

�∑n

i=1
(Ai − Pi)

2

n

(10)MAPE =

[
1

n

n∑

i=1

|
|Ai − Pi

|
|

Am

]

× 100

Fig. 7  ANFIS-PSO chart [61]

Table 5  Assessment of the 
performance of the prediction 
models used in this study

Statistical functions Prediction models

ANFIS ANFIS-GA ANFIS-PSO ANFIS-SFS

Train Test Train Test Train Test Train Test

RMSE 4.569 3.403 3.450 2.418 2.817 1.939 1.814 1.223
MAE 4.234 3.242 3.194 2.325 2.626 1.891 1.694 1.133
MAPE (%) 4.112 2.843 3.101 2.039 2.550 1.659 1.645 0.994
R2 0.904 0.873 0.945 0.935 0.963 0.965 0.987 0.986
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Fig. 8  Use of ANFIS in predicting AOp

Fig. 9  Use of ANFIS-GA in predicting AOp

Fig. 10  Use of ANFIS-PSO in predicting AOp
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effective in comparison with GA and PSO in regard to the 
ANFIS improvement. For a better understanding, the Taylor 
diagrams for both training and testing phases are shown in 
Fig. 12. Observing Fig. 12, it can be seen that the proposed 
ANFIS-SFS model was more effective than the others. In 
addition, the Yang and Zang’s [81] method was used to con-
duct a sensitivity analysis for the aim of showing the relative 
effect of HD, PF, MC, T, B, S, RQD, NoH, and D upon AOp:

The values of rij indicate the impact of each input upon 
the output. With the use of Eq. 10, the values of rij for HD, 
PF, MC, T, B, S, RQD, NoH, and D were calculated, as 
shown in Fig. 13. These results confirmed that T was the 
most effective parameter upon AOp.

(11)rij =

∑n

k=1

�
yik × yok

�

�∑n

k=1
y2
ik

∑n

k=1
y2
ok

6  Conclusions

Any blasting operation unavoidably leads to different unde-
sirable effects such as air overpressure (AOp). As a result, 
it is of high importance to predict AOp with a high accu-
racy in a way to determine properly the safe regions around 
the operation sites. This paper represents several hybrid 
evolutionary models based on ANFIS optimized by SFS, 
PSO, and GA to predict AOp. It is worth mentioning that 
this is the first work that predicts AOp through ANFIS-SFS 
model. A database was created containing 62 datasets col-
lected from blasting events performed at four quarry sites in 
Malaysia [41]. More specifically, the database included 62 
sets of data, nine independent parameters, and one depend-
ent parameter. In the predictive models, the independent 
parameters were set as inputs, and the dependent parameter 
(AOp) was set as output. Finally, some statistical functions 
were designed to demonstrate the capacity and superiority of 
the proposed models in the prediction of AOp. The conclu-
sions of this study are as follows: (1) The use of SFS, GA, 
and PSO algorithms had a positive impact on the ANFIS 

Fig. 11  Use of ANFIS-SFS in predicting AOp
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performance. (2) The results obtained in this research con-
firmed that the ANFIS-SFS was the most effective model 
in regard to accuracy in AOp prediction. In case of ANFIS-
SFS, the values of R2, RMSE, MAE, and MAPE were 
obtained as 0.986, 1.223, 1.133, and 0.994%, respectively. 
As a result, SFS could meaningfully enhance the ANFIS 
performance quality. (3) The ANFIS-SFS model can have 
the capacity required for addressing other prediction prob-
lems that appear generally in the context of rock blasting. 
(4) Obtained results show that the ANFIS-SFS model can be 
used with confidence for future research works on predicting 
the AOp. (5) According to the sensitivity analysis results, 
the stemming (T) was the most effective parameter on the 
intensity of AOp. (6) To enhance the ANFIS performance, 
other meta-heuristic algorithms, including the green heron 
optimization algorithm, gradient evolution algorithm, fire-
work algorithm, honey bee mating optimization, and interior 
search algorithm, can be implemented, too.

Fig. 12  Obtained Taylor diagrams from model 1: ANFIS, model 2: 
ANFIS-GA, model 3: ANFIS-PSO, and model 4: ANFIS-SFS for 
both training and testing phases
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